
Sets and Logic, Dr. Block, Lecture Notes, 3-20-2020

We continue Chapter 8. In addition to carefully reading these Lecture
Notes you should read Section 8.4 in the text, and work on Exercises 19
-31 at the end of Chapter 8. We begin with this definition:

Definition 73. A natural number x is perfect if and only if the sum
of all of the positive divisors of x which are less than x is equal to x.

Several examples are given in the text. Note that a natural number x
is perfect if and only if the sum of all of the positive divisors of x which
are less than or equal to x is equal to 2x. This is sometimes given as the
definition of a perfect number. The following theorem appears in the text
as Theorem 8.1 on page 167.

Theorem 74. If A = {2n−1(2n − 1) : n ∈ N, and 2n − 1 is prime} and
P = {p ∈ N : p is perfect}, then A ⊆ P.

You should study the proof given in the text. An important part of
the proof is the assertion that the list displayed at the bottom of Page
167 which begins with 20 and ends with 2n−1(2n− 1) is a complete list of
all of the positive divisors of p. This may be justified as follows: Suppose
that d is a positive divisor of p. Then d has a unique prime factorization
(this will be proved in Chapter 10.) Each of the primes in the prime
factorization of d must also appear in the prime factorization of p. Thus,
the only primes which may appear in the prime factorization of d are 2
and 2n − 1.

Theorem 74 establishes a connection between prime numbers of the
form 2n − 1 and perfect numbers. We give a name to prime numbers of
this form.

Definition 75. A prime number of the form (2n − 1) for some n ∈ N
is called a Mersenne prime.

Keep in mind the following: If 2n−1 is prime, then n is prime. However,
the converse is false.



The next theorem appears in the text as Theorem 8.2 on Page 169 in
the text.

Theorem 76. If A = {2n−1(2n − 1) : n ∈ N, and 2n − 1 is prime} and
E = {p ∈ N : p is perfect and even}, then A = E.

See the discussion and examples of even perfect numbers on Page 170
of the text.

We conclude this lecture with another exercise from the text.

Exercise 30. Prove that (Z× N) ∩ (N× Z) = N× N.

Proof. First, we prove that

(Z× N) ∩ (N× Z) ⊆ N× N.

Suppose that (x, y) ∈ (Z × N) ∩ (N × Z). Then (x, y) ∈ (Z × N)
and (x, y) ∈ (N × Z). Since (x, y) ∈ (N × Z) we have x ∈ N. Since
(x, y) ∈ (Z × N) we have y ∈ N. Since x ∈ N and y ∈ N it follows that
(x, y) ∈ (N× N). We conclude that

(Z× N) ∩ (N× Z) ⊆ N× N.

Second, we prove that

(N× N) ⊆ (Z× N) ∩ (N× Z).

Suppose that (x, y) ∈ (N × N). Then x ∈ N and y ∈ N. As N ⊆ Z, it
follows that also x ∈ Z and y ∈ Z. Thus, (x, y) ∈ (Z × N) and (x, y) ∈
(N× Z). Therefore, (x, y) ∈ (Z× N) ∩ (N× Z). We conclude that

(N× N) ⊆ (Z× N) ∩ (N× Z).

Finally, since each of the sets is a subset of the other, we have

(Z× N) ∩ (N× Z) = N× N.
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