
Sets and Logic, Dr. Block, Lecture Notes, 4-13-2020

We continue discussing equivalence relations and partitions. Please
read Section 11.5 of the text and work on Exercises 1, 3, 5, and 7 on page
221 of the text.

Last time we saw that if you start with an equivalence relation on a
set A, then the set equivalence classes forms a partition of A. of Our next
theorem shows that if we start with a partition F of a set A, then from
this partition we can get an equivalence relation on A. This theorem is
given as an exercise in the text (Exercise 4 in section 11.4).

Here is an example to think about as you study the proof.

Consider the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} and the partition of A given
by

F = {{1, 2, 3, 4}, {5, 6}, {7, 8, 9}}.
I have inserted some remarks at various points in the proof. The

remarks should be omitted in the formal proof.
Theorem. Suppose that A is a set, and F is a partition of A. Then

there is an equivalence relation R on A such that the set of equivalence
classes is equal to F .

Proof. Suppose that A is a set, and F is a partition of A. We define
a relation R on A by declaring that xRy if and only if there exists some
B ∈ F such that x ∈ B and y ∈ B.

(Remark: We use the same variable B here to indicate that both x
and y are in the same set of the partition. So, in the example given
above, we have xRy if and only if x, y ∈ {1, 2, 3, 4} or x, y ∈ {5, 6} or
x, y ∈ {7, 8, 9}.)

First, we prove that R is reflexive. Suppose that x ∈ A. Then, since
F is a partition, there exists some B ∈ F such that x ∈ B. It follows
by logical equivalence that x ∈ B and x ∈ B. Therefore, xRx. It follows
that R is reflexive.

(Remark: We used the equivalence, P ≡ (P ∧ P ).)



Second, we prove that R is symmetric. Suppose that x, y ∈ A and
xRy. Then for some B ∈ F , we have x ∈ B and y ∈ B. It follows by
logical equivalence that y ∈ B and x ∈ B. Therefore, yRx. It follows that
R is symmetric.

(Remark: We used the equivalence, (P ∧Q) ≡ (Q ∧ P ).)

Third, we prove that R is transitive. Suppose that x, y, z ∈ A. Suppose
that xRy and yRz. Then, there is some set B ∈ F such that x ∈ B and
y ∈ B, and there is some set D ∈ F such that y ∈ D and z ∈ D.

(Remark: We could not at this point call both of the sets B. If we did
we would be assuming that the two sets are equal. We can not assume
that. We have to prove it.)

Now, observe that y ∈ B and y ∈ D. So, B and D are not disjoint.
Since B,D ∈ F and F is a partition, it follows that B = D. Thus, x ∈ B

and z ∈ B. Therefore, xRz. It follows that R is transitve.

Since R is reflexive, symmetric, and transitive, we conclude that R is
an equivalence relation.

Finally, we prove that for the relation R, the set of equivalence classes
is equal to F .

(Remark: We prove that the two sets are equal, by proving that each
one is a subset of the other.)

First, suppose that X is an equivalence class. Then X = [x] for some
x ∈ A. Since F is a partition, there is some B ∈ F such that x ∈ B. It
follows from how we defined the relation R that X = [x] = B. So X ∈ F .

Second, suppose that X ∈ F . Since F is a partition, there is some
x ∈ X. It follows from how we defined the relation R that X = [x]. So X
is an equivalence class.

We conclude that the set of equivalence classes is equal to F .
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Theorem. Let n be a positive integer. The relation R on Z given by
xRy if and only if

x ≡ y (modn)

is an equivalence relation on Z. Moreover, there are exactly n distinct
equivalence classes given by

[0], [1], . . . , [n− 1].

Proof. It is proved in the text on Page 208, that this relation R is
reflexive, symmetric, and transitive. Hence, R is an equivalence relation.

We now prove two claims:

Claim 1. If c, d ∈ {0, 1, . . . , n− 1} and c 6= d, then [c] 6= [d].

We prove Claim 1. Suppose that c, d ∈ {0, 1, . . . , n − 1} and c 6= d.
Proceeding by contradiction, suppose that [c] = [d]. Then c ∈ [d]. So,

c ≡ d (modn).

It follows that for some integer j we have c−d = jn. Then d−c = (−j)n.
Since c 6= d, either c > d or d > c. We consider these two cases.

Case 1. c > d. Then c − d is a positive integer which is less than n,

and n divides c− d. This is a contradiction.

Case 2. d > c. Then d − c is a positive integer which is less than n,

and n divides d− c. This is a contradiction.

Since we obtained a contradiction in each case, this proves the Claim
1.

Claim 2. For every integer x there is an integer r ∈ {0, 1, . . . , n− 1}
such that [x] = [r].

We prove Claim 2. Suppose that x is an integer. By the division
algorithm there exist integers q and r such that x = qn+r. So x−r = nq.
It follows that n divides x− r. Therefore,

x ≡ r (modn).



It follows that [x] = [r]. This proves Claim 2.

It follows from the two claims that there are exactly n distinct equiv-
alence classes given by

[0], [1], . . . , [n− 1].
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Definition. The relation R in the previous theorem is sometimes
called the relation ≡ (mod n). The set of equivalence classes for this
relation is denoted by Zn. This set is sometimes called the integers modulo
n.

The following theorem is important to keep in mind as you read Section
11.5 of the text.

Theorem. Let n be a positive integer. Suppose that a, b, c, d ∈ Z
satisfy

a ≡ c (modn) and b ≡ d (modn).

Then a + b ≡ c + d (modn) and ab ≡ cd (modn).

Proof. Let n be a positive integer. Suppose that a, b, c, d ∈ Z satisfy

a ≡ c (modn) and b ≡ d (modn).

Then there are integers j and k such that a− c = jn and b− d = kn.

It follows that

(a + b)− (c + d) = (a− c) + (b− d) = jn + kn = (j + k)n.

Therefore, a + b ≡ c + d (modn).

It also follows that

ab−cd = ab−ad+ad−cd = a(b−d)+d(a−c) = akn+djn = (ak+dj)n.

Therefore, ab ≡ cd (modn).
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Definition and Remark. We can define two operations, which we
call addition and multiplication, on the set Zn by

[a] + [b] = [a + b] and [a] · [b] = [a · b].

This is well-defined in light of the previous theorem. This is discussed in
Section 11.5 of the text.
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