Sets and Logic, Dr. Block, Lecture Notes, 4-15-2020
We discuss Sections 11.6, 12.1, and 12.2 in the text. Please read these Sections 11.6 and 12.1 and work on Exercises 1, 3, 5, 7, and 9 on page 228. Please also read the first part of Section 1.2 through Page 230.

In the first 5 sections of Chapter 11, we discussed relations of a set A. More generally, we can consider relations from a set A to a set B. Here is the definition.

Definition. We say that f is a relation from A to B if and only if $f \subseteq(A \times B)$.

We will mainly be interested in a special type of relation from A to B called a function. Here is the definition.

Definition. Suppose that f is a relation from A to B. We say that f is a function from A to B if and only if for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$. We use the notation $f: A \rightarrow B$ to indicate that f is a function from A to B. Also, if $a \in A$, we let $f(a)$ denote the unique $b \in B$ such that $(a, b) \in f$.

Problem 1. Let $A=\{1,2,3\}$ and $B=\{4,5\}$. Which of the following relations from A to B is a function?
(a) $\{(1,4),(2,5)\}$
(b) $\{(1,4),(2,5),(3,4),(3,5)\}$
(c) $\{(1,4),(2,5),(3,4)\}$
(d) $\{(1,4),(2,4),(3,4)\}$

Solution.

(a) This relation f is not a function. If we consider $a=3$, then there does not exist $b \in B$ such that $(a, b) \in f$.
(b) This relation f is not a function. If we consider $a=3$, then while there does exist $b \in B$ such that $(a, b) \in f$, the b is not unique.
(c) This relation f is a function and we can describe the function as follows: $f: A \rightarrow B$ given by

$$
f(1)=4, f(2)=5, f(3)=4
$$

(d) This relation f is a function and we can describe the function as follows: $f: A \rightarrow B$ given by

$$
f(1)=4, f(2)=4, f(3)=4 .
$$

Definition. Suppose that $f: A \rightarrow B$. The set A is called the domain of f. The set B is called the codomain or sometimes target space of f. The range of f is the set of all $b \in B$ such that there exists $a \in A$ with $f(a)=b$.

Remark. In the text a definition of equality of two functions is given. The definition in the text is not a standard definition. Here is my definition.

Definition. We say that two functions $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal if and only if $A=C, B=D$, and the set f is equal to the set g.

Remark. It follows from the definition above (and also from the definition in the text) that two functions f and g from A to B are equal if and only if for every $a \in A, f(a)=g(a)$. So, to prove that two functions f and g from A to B are equal we would structure the proof as follows:

First line of proof: Suppose that $a \in A$.
Last line of proof: $f(a)=g(a)$.
Definition. Suppose that $f: A \rightarrow B$. We say that f is injective or one-to-one if and only if for all $a_{1} \in A$ and $a_{2} \in A$ if $a_{1} \neq a_{2}$ then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.

Remark. Note that the contrapositive of the statement
if $a_{1} \neq a_{2}$ then $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
is the statement
if $f\left(a_{1}\right)=f\left(a_{2}\right)$ then $a_{1}=a_{2}$.
So either statement could be used just as well in giving the definition.
So there are two natural ways to prove that a function $f: A \rightarrow B$ is injective.

Direct approach:

First line of proof: Suppose that $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$.
Last line of proof: $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
Contrapositive approach:
First line of proof: Suppose that $a_{1}, a_{2} \in A$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Last line of proof: $a_{1}=a_{2}$.
Suggestion: I suggest trying the contrapositive approach first.
Remark. Note that you do not have to use the variables a_{1} and a_{2} in writing the proof. Instead you could use s and t or v and w for example.

Here is an example.
Problem 2. Prove that the function $f:(\mathbb{R}-\{-1\}) \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{2 x}{x+1}
$$

is injective.
Proof: Suppose that $s, t \in(\mathbb{R}-\{-1\})$ and $f(s)=f(t)$. Then

$$
\begin{aligned}
\frac{2 s}{s+1} & =\frac{2 t}{t+1} . \\
2 s(t+1) & =2 t(s+1) . \\
2 s t+2 s & =2 t s+2 t . \\
2 s & =2 t . \\
s & =t .
\end{aligned}
$$

We conclude that f is injective.

Definition. Suppose that $f: A \rightarrow B$. We say that f is surjective or onto B or sometimes just onto if and only if for every $b \in B$ there exists $a \in A$ with $f(a)=b$.

Remark. To prove that a function $f: A \rightarrow B$ is surjective, structure the proof as follows:

First line of Proof: Suppose that $b \in B$.
Next part of proof: Set $a=$??? Deciding what to set a equal to might involve some thought or solving an equation, but this need not be included in the proof.

Last part of proof: Verify that $a \in A$, and $f(a)=b$. In some problems it is obvious that $a \in A$, so in these problems you can just state $a \in A$. In the following example this is not obvious.

Problem 3. Prove that the function $f:(\mathbb{R}-\{2\}) \rightarrow(\mathbb{R}-\{5\})$ defined by $f(x)=\frac{5 x+1}{x-2}$ is surjective.

Discussion. We will start with $b \in(\mathbb{R}-\{5\})$. We need to find $a \in$ $(\mathbb{R}-\{2\})$ with $f(a)=b$. We can try to obtain a by solving the equation

$$
\frac{5 x+1}{x-2}=b
$$

for x. Let's do this.

$$
\begin{gathered}
5 x+1=b x-2 b \\
(5-b) x=-2 b-1 \\
x=\frac{-2 b-1}{5-b}
\end{gathered}
$$

This is helpful, but what does this prove? We started with the hypothesis $\frac{5 x+1}{x-2}=b$. Then we proved that $x=\frac{-2 b-1}{5-b}$. So, we proved that if $\frac{5 x+1}{x-2}=b$, then $x=\frac{-2 b-1}{5-b}$. What we want to prove is that if $x=\frac{-2 b-1}{5-b}$, then $\frac{5 x+1}{x-2}=b$. So this does not constitute a valid proof. But, this does tell us what to set a equal to in the proof.

Note that unfortunately, several proofs in the text that a given function is surjective are not correctly written proofs. They are instead discussions similar to the discussion above.

Here is one way to write a valid proof.
Proof. Suppose that $b \in(\mathbb{R}-\{5\})$. Set $a=\frac{-2 b-1}{5-b}$. Then a is a welldefined real number since $b \neq 5$. Moreover, $a(5-b)=-2 b-1$. It follows
that $5 a-a b=-2 b-1$, so

$$
5 a+1=b(a-2)
$$

It follows from this equality that $a \neq 2$ (because if $a=2$, then $11=0$). Thus, $a \in(\mathbb{R}-\{2\})$.

It also follows that

$$
f(a)=\frac{5 a+1}{a-2}=b .
$$

We conclude that f is surjective.

Here is another way to write a valid proof for the same problem.
Proof. Suppose that $b \in(\mathbb{R}-\{5\})$. Set $a=\frac{-2 b-1}{5-b}$. Then a is a well-defined real number since $b \neq 5$.

We claim that $a \neq 2$. We prove this claim by contradiction. Suppose that $a=2$. Then $2=\frac{-2 b-1}{5-b}$. It follows that $10-2 b=-2 b-1$. So, $10=-1$. This is a contradiction. This proves the claim that $a \neq 2$. It follows that $a \in(\mathbb{R}-\{2\})$.

Finally, we have

$$
f(a)=\frac{5 a+1}{a-2}=\frac{5\left(\frac{-2 b-1}{5-b}\right)+1}{\left(\frac{-2 b-1}{5-b}\right)-2}=\frac{-10 b-5+5-b}{-2 b-1-10+2 b}=b .
$$

We conclude that f is surjective.
Definition. We say that f is bijective if and only if f is injective and surjective.

Remark. To prove that a function is bijective, prove that the function is injective and surjective. The function f given in the Problem 3 above is bijective. We have already proved that f is surjective. Here is a proof that f is injective.

Problem 4. Prove that the function $f:(\mathbb{R}-\{2\}) \rightarrow(\mathbb{R}-\{5\})$ defined by $f(x)=\frac{5 x+1}{x-2}$ is injective.

Proof. Suppose that $v, w \in(\mathbb{R}-\{2\})$ and $f(v)=f(w)$. Then

$$
\frac{5 v+1}{v-2}=\frac{5 w+1}{w-2}
$$

It follows that

$$
5 v w-10 v+w-2=5 w v-10 w+v-2 .
$$

Adding $2-5 \mathrm{vw}$ to each side of this equality, we obtain

$$
-10 v+w=-10 w+v .
$$

It follows that $-11 v=-11 w$, and hence, $v=w$.
We conclude that f is injective.

