Sets and Logic, Dr. Block, Lecture Notes, 4-20-2020
We continue discussing material from Section 12.5 of the text. Please read this section and work on Exercises 1,3, and 5 on Page 241. We begin with a lemma.

1. Lemma. Suppose that $f: A \rightarrow B$. Suppose also that the inverse relation f^{-1} from B to A is a function from B to A. Suppose that $x \in A$ and $y \in B$. Then $f(x)=y$ if and only if $f^{-1}(y)=x$.

Proof. According to the definitions, the following are equivalent:

$$
\begin{gathered}
f(x)=y \\
(x, y) \in f \\
(y, x) \in f^{-1} \\
f^{-1}(y)=x
\end{gathered}
$$

We have the following theorem.
2. Theorem. Suppose that $f: A \rightarrow B$. The inverse relation f^{-1} from B to A is a function from B to A if and only if f is bijective.

Proof. Suppose that $f: A \rightarrow B$.
First, we prove that if the inverse relation f^{-1} from B to A is a function from B to A, then f is bijective.
Suppose that the inverse relation f^{-1} from B to A is a function from B to A.

We prove that f is injective. Suppose that $v, w \in A$ and $f(v)=f(w)$. Set $y=f(v)$. Then $y \in B$, and also, $y=f(w)$. It follows from

Lemma 1 above that $f^{-1}(y)=v$ and $f^{-1}(y)=w$. Since f^{-1} is a function, it follows that $v=w$. Therefore, f is injective.

Next, we prove that f is surjective. Suppose that $b \in B$. Since f^{-1} is a function, $f^{-1}(b)$ is well-defined. Set $a=f^{-1}(b)$. Then, $a \in A$, and, by Lemma $1, f(a)=b$. Therefore, f is surjective.
Since f is injective and surjective, it follows that f is bijective.
We conclude that if the inverse relation f^{-1} from B to A is a function from B to A, then f is bijective.

Second, we prove that if f is bijective, then the inverse relation f^{-1} from B to A is a function from B to A.

Suppose that $b \in B$. According to the definition of a function, we must prove that there exists a unique $a \in A$ such that $(b, a) \in f^{-1}$.

We prove existence first. Since f is surjective, there exists $a \in A$ with $f(a)=b$. Then, by definition, we have $(a, b) \in f$. It follows that $(b, a) \in f^{-1}$. This prove existence.
Next, we prove uniqueness. Suppose that $a_{1}, a_{2} \in A,\left(b, a_{1}\right) \in f^{-1}$ and $\left(b, a_{2}\right) \in f^{-1}$. Then $\left(a_{1}, b\right) \in f$ and $\left(a_{2}, b\right) \in f$. It follows that $f\left(a_{1}\right)=f\left(a_{2}\right)$. Thus, since f is injective, we have $a_{1}=a_{2}$. This proves uniqueness.

Since we have proved existence and uniqueness, we conclude that there exists a unique $a \in A$ such that $(b, a) \in f^{-1}$. It follows that the inverse relation f^{-1} from B to A is a function from B to A.

We conclude that if f is bijective, then the inverse relation f^{-1} from B to A is a function from B to A.

Finally, since we have proved that each statement implies the other, we conclude that the inverse relation f^{-1} from B to A is a function from B to A if and only if f is bijective.

Here is an example.
3. Problem. Let A denote the closed interval $(-\infty,-3]$. Let B denote the closed interval $[-7, \infty)$. Prove that the function $f: A \rightarrow B$ given by $f(x)=(x+3)^{2}-7$ is bijective. Find a formula for f^{-1}.
Discussion: We will first prove that f is surjective. We will start with $b \in B$. We then must produce an $a \in A$ with $f(a)=b$. To find a we need to solve an equation as follows:

$$
(a+3)^{2}-7=b
$$

Note that if you prefer, you could use x and y in this equation instead of a and b. We solve the equation as follows:

$$
\begin{aligned}
& (a+3)^{2}-7=b \\
& (a+3)^{2}=b+7
\end{aligned}
$$

Now, we know that there are two real numbers whose square is $b+7$, namely, $\sqrt{b+7}$ and $-\sqrt{b+7}$. Since we need to have $a \in A$, we must have $a+3 \leq 0$. So we need to choose $-\sqrt{b+7}$. So, we continue solving for a as follows:

$$
\begin{aligned}
& a+3=-\sqrt{b+7} \\
& a=-3-\sqrt{b+7}
\end{aligned}
$$

Now we can proceed with the formal proof:

Proof that f is bijective.

First, we prove that f is surjective. Suppose that $b \in B$. Set $a=$ $-3-\sqrt{b+7}$. Then $a \in A$, and

$$
f(a)=(a+3)^{2}-7=((-3-\sqrt{b+7})+3)^{2}-7=(b+7)-7=b .
$$

Therefore, f is surjective.

Second, we prove that f is injective. Suppose that $v, w \in A$ and $f(v)=f(w)$. Then

$$
(v+3)^{2}-7=(w+3)^{2}-7
$$

It follows that

$$
(v+3)^{2}=(w+3)^{2}
$$

Since $v, w \in A$, it follows that $v+3 \leq 0$ and $w+3 \leq 0$. From this, together with the equality above, we can conclude that $v+3=w+3$. Thus, $v=w$. Therefore, f is injective.

Finally, since f is surjective and injective, we conclude that f is bijective.

Now, we know from Theorem 2, that the inverse relation f^{-1} from B to A is a function from B to A. Let's find a formula for f^{-1}. In the proof that f is surjective, we saw that if $a=-3-\sqrt{b+7}$, then $f(a)=b$. By Lemma 1 above, it follows that $f^{-1}(b)=a$. So, a formula for if f^{-1} is given by $f^{-1}(b)=-3-\sqrt{b+7}$. In writing this formula, the b is a dummy variable. So, for example, you could write the formula as $f^{-1}(y)=-3-\sqrt{y+7}$ or $f^{-1}(x)=-3-\sqrt{x+7}$.

