Sets and Logic, Dr. Block, Lecture Notes, 4-3-2020
We begin Chapter 11 in the text on relations. Please study sections 11.1 and 11.2 in the text. Also try to do the odd-numbered exercises 1-11 on page 204 and 1-17 on pages 208-209.

Definition and Notation. A relation on a set A is a subset R of the Cartesian product $A \times A$. We often use the notation $x R y$ instead of $(x, y) \in R$.

Example 1. Define a relation R on Z by

$$
R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x \mid y\}
$$

We could define this same relation by stating:
R is the relation on Z satisfying $x R y$ if and only if x divides y.
Informally, we could define the same relation as follows:
Let R be the relation divides on the set of integers.
So in this example instead of writing $x R y$ we would write $x \mid y$.
Example 2. Suppose that we say informally: Consider the relation $<$ on the set of real numbers. What formal relation are we describing? Formally, we are describing the relation R on \mathbb{R} given by

$$
R=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x<y\}
$$

Example 3. Consider the relation R on \mathbb{R} given by

$$
R=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x^{2}+y^{2}=1\right\}
$$

We can think of $\mathbb{R} \times \mathbb{R}$ as the usual x, y plane, and visualize this set of ordered pairs as the circle of radius one with center at the origin in this plane.

Definition. Suppose that R is a relation on a set A.
R is reflexive if and only if for all $\forall x \in A, x R x$.
R is symmetric if and only if $\forall x, y \in A,(x R y \Rightarrow y R x)$.
R is transitive if and only if $\forall x, y, z \in A,((x R y \wedge y R z) \Rightarrow x R z)$.
Fron these definitions we have the following: Suppose that R is a relation on a set A.

To prove that R is reflexive: Suppose that $x \in A$. Prove that $x R x$.
To prove that R is symmetric: Suppose that $x, y \in A$, and $x R y$. Prove that $y R x$.

To prove that R is transitive: Suppose that $x, y, z \in A$. Suppose also that $x R y$ and $y R z$. Then prove that $x R z$.

Let's look again at the three examples above and consider these three properties.

Problem 1. Let R be the relation divides given in Example 1. Prove or disprove each of the following.

1. R is reflexive.
2. R is symmetric.
3. R is transitive.

Proofs.

1. We prove the statement: R is reflexive.

Suppose that $x \in \mathbb{Z}$. We know that $x=1 \cdot x$, and also, $1 \in \mathbb{Z}$. It now follows from the definition that $x \mid x$. Therefore, R is reflexive.
2. We disprove the statement. R is symmetric.

We know that 2 and 6 are integers. Also, 2 divides 6 , but 6 does not divide 2 . Therefore, R is not symmetric.
3. We prove the statement. R is transitive.

Suppose that $x, y, z \in \mathbb{Z}$. Suppose also that $x \mid y$ and $y \mid z$. Then for some integers c, k we have $y=c x$ and $z=k y$. It follows that

$$
z=k y=k(c x)=(k c) x .
$$

Since $k c$ is an integer, it follows that $x \mid z$. Therefore, R is transitive.

Note that we disprove the statement: R is symmetric by giving a counterexample.

Problem 2. Let R be the relation $<$ given in Example 2. Prove or disprove each of the following.

1. R is reflexive.
2. R is symmetric.
3. R is transitive.

Proofs.

1. We disprove the statement: R is reflexive.

For the real number 1 , it is not the case that $1<1$. So R is not reflexive.
2. We disprove the statement. R is symmetric.

We know that 1 and 2 are real numbers. Also, $1<2$ but it is not true that $2<1$. Therefore, R is not symmetric.
3. We prove the statement. R is transitive.

Suppose that $x, y, z \in \mathbb{R}$. Suppose also that $x<y$ and $y<z$. It follows from a basic order property of real numbers that $x<z$. Therefore, R is transitive.

Note that for the two statements we disproved, there were lots of choices for the counterexample. But we only have to give one counterexample. This is because the negation of a statement of the form $\forall x \in \mathbb{R}, P(x)$ is given by $\exists x \in \mathbb{R}, \sim P(x)$.

Problem 3. Let R be the relation given in Example 3. Prove or disprove each of the following.

1. R is reflexive.
2. R is symmetric.
3. R is transitive.

Proofs.

1. We disprove the statement: R is reflexive.

For the real number 5 , it is not the case that $5^{2}+5^{2}=1$. So $(5,5) \notin R$. It follows that R is not reflexive.
2. We prove the statement: R is symmetric.

Suppose that $(x, y) \in R$. Then $x^{2}+y^{2}=1$. So also, $y^{2}+x^{2}=1$. It follows that $(y, x) \in R$. Therefore, R is symmetric.
3. We disprove the statement. R is transitive.

Set $x=0, y=1$ and $z=0$. Since $x^{2}+y^{2}=1$, we have $(x, y) \in R$. Since $y^{2}+z^{2}=1$, we have $(y, z) \in R$. But, since $x^{2}+z^{2}=0 \neq 1$, we have $(x, z) \notin R$. Therefore, R is not transitive.

