
Sets and Logic, Dr. Block, Lecture Notes, 4-6-2020

We continue Chapter 11 in the text on relations. Please study section
11.3 in the text. Also try to do the odd-numbered exercises 1-11 on page
214.

1. Definition. Suppose that R is a relation on a set A. We say that
R is an equivalence relation on A if and only if R is reflexive,
transitive, and symmetric.

2. Remark. To prove that a relation R is an equivalence relation on a
set A, we prove that R is reflexive, symmetric, and transitive. Recall
the following from the last lecture notes.

To prove that R is reflexive: Suppose that x ∈ A. Prove that xRx.

To prove that R is symmetric: Suppose that x, y ∈ A, and xRy.

Prove that yRx.

To prove that R is transitive: Suppose that x, y, z ∈ A. Suppose also
that xRy and yRz. Then prove that xRz.

3. Problem. Define a relation R on Z by

xRy if and only if x2 + y2 is even.

Prove that R is an equivalence relation.

Proof.

First, we prove that R is reflexive. Suppose that x ∈ Z. Observe that
x2 + x2 = 2x2. It follows that x2 + x2 is even. Thus, xRx. Therefore,
R is reflexive.

Second, we prove that R is symmetric. Suppose that x, y ∈ Z, and
xRy. Then x2 + y2 is even. Since y2 + x2 = x2 + y2, it follows that
y2 + x2 is even. Thus, yRx. Therefore, R is symmetric.

Third, we prove that R is transitive. Suppose that x, y, z ∈ Z.
Suppose also that xRy and yRz. Then x2 + y2 is even, and y2 + z2

is even.



Now, it follows from the definition, that the integer −2y2 is even.
Since the sum of three even integers is even, it follows that the inte-
ger,

x2 + y2 + y2 + z2 − 2y2

is even. So x2 + z2 is even. Thus, xRz. Therefore, R is transitive.

�

4. Definition. Suppose that R is an equivalence relation on A. Suppose
that x ∈ A. The equivalence class of x denoted [x] is given by

[x] = {y ∈ A : xRy}.

Let’s consider the equivalence relation R on Z given in the problem
above. Consider the equivalence class of the integer 0. We have

[0] = {y ∈ Z : 0Ry} = {y ∈ Z : 02 + y2 is even }

= {y ∈ Z : y2 is even } = {y ∈ Z : y is even }.

So the equivalence class of 0 is the set of all even integers.

Suppose we consider an even integer y 6= 0. What is the equivalence
class of y? We know that y is in the equivalence class of 0, so we
have 0Ry.

I claim that [0] ⊆ [y]. Let’s prove this claim. Suppose that x ∈ [0].
Then 0Rx. Since R is symmetric we also have xR0. Now, we saw
above that 0Ry. Since xR0 and 0Ry, we also have xRy (using the
fact that R is transitive). Since R is symmetric we also have yRx.

So, by definition, we have x ∈ [y]. Therefore, [0] ⊆ [y].

I claim that also [y] ⊆ [0]. This can be proved in the same way as
the previous claim. It follows that [y] = [0]. So, we have proved that
for any even integer y, the equivalence class of y is the set of even
integers. So, if E is the set of even integers, then

E = [0] = [2] = [−2] = [4] = [−4] = . . .



Now, let’s think about the equivalence class of the integer 1. We have

[1] = {y ∈ Z : 1Ry} = {y ∈ Z : 12 + y2 is even }

= {y ∈ Z : 1 + y2 is even } = {y ∈ Z : y is odd }.
So, the equivalence class of 1 is the set of all odd integers. Moreover,
we can show as above, that for any odd integer y, we have [y] = [1].
So if D denotes the set of odd integers, then

D = [1] = [−1] = [3] = [−3] = [5] = [−5] = . . .
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By almost the same proof as above, we can prove the following result
about equivalence relation and equivalence classes.

5. Theorem. Suppose that R is an equivalence relation on A. Suppose
that v, w ∈ A. If w ∈ [v], then [w] = [v].

Try to write a proof of this Theorem, proving that each of the two
sets [v] and [w] is a subset of the other. I will include a proof in the
lecture notes next time.


