Sets and Logic, Dr. Block, Lecture Notes, 4-6-2020
We continue Chapter 11 in the text on relations. Please study section 11.3 in the text. Also try to do the odd-numbered exercises 1-11 on page 214.

1. Definition. Suppose that R is a relation on a set A. We say that R is an equivalence relation on A if and only if R is reflexive, transitive, and symmetric.
2. Remark. To prove that a relation R is an equivalence relation on a set A, we prove that R is reflexive, symmetric, and transitive. Recall the following from the last lecture notes.

To prove that R is reflexive: Suppose that $x \in A$. Prove that $x R x$.
To prove that R is symmetric: Suppose that $x, y \in A$, and $x R y$. Prove that $y R x$.

To prove that R is transitive: Suppose that $x, y, z \in A$. Suppose also that $x R y$ and $y R z$. Then prove that $x R z$.
3. Problem. Define a relation R on \mathbb{Z} by

$$
x R y \text { if and only if } x^{2}+y^{2} \text { is even. }
$$

Prove that R is an equivalence relation.

Proof.

First, we prove that R is reflexive. Suppose that $x \in \mathbb{Z}$. Observe that $x^{2}+x^{2}=2 x^{2}$. It follows that $x^{2}+x^{2}$ is even. Thus, $x R x$. Therefore, R is reflexive.
Second, we prove that R is symmetric. Suppose that $x, y \in \mathbb{Z}$, and $x R y$. Then $x^{2}+y^{2}$ is even. Since $y^{2}+x^{2}=x^{2}+y^{2}$, it follows that $y^{2}+x^{2}$ is even. Thus, $y R x$. Therefore, R is symmetric.
Third, we prove that R is transitive. Suppose that $x, y, z \in \mathbb{Z}$. Suppose also that $x R y$ and $y R z$. Then $x^{2}+y^{2}$ is even, and $y^{2}+z^{2}$ is even.

Now, it follows from the definition, that the integer $-2 y^{2}$ is even. Since the sum of three even integers is even, it follows that the integer,

$$
x^{2}+y^{2}+y^{2}+z^{2}-2 y^{2}
$$

is even. So $x^{2}+z^{2}$ is even. Thus, $x R z$. Therefore, R is transitive.
4. Definition. Suppose that R is an equivalence relation on A. Suppose that $x \in A$. The equivalence class of x denoted $[x]$ is given by

$$
[x]=\{y \in A: x R y\}
$$

Let's consider the equivalence relation R on \mathbb{Z} given in the problem above. Consider the equivalence class of the integer 0 . We have

$$
\begin{aligned}
& {[0]=\{y \in \mathbb{Z}: 0 R y\}=\left\{y \in \mathbb{Z}: 0^{2}+y^{2} \text { is even }\right\}} \\
& \quad=\left\{y \in \mathbb{Z}: y^{2} \text { is even }\right\}=\{y \in \mathbb{Z}: y \text { is even }\}
\end{aligned}
$$

So the equivalence class of 0 is the set of all even integers.
Suppose we consider an even integer $y \neq 0$. What is the equivalence class of y ? We know that y is in the equivalence class of 0 , so we have $0 R y$.

I claim that $[0] \subseteq[y]$. Let's prove this claim. Suppose that $x \in[0]$. Then $0 R x$. Since R is symmetric we also have $x R 0$. Now, we saw above that $0 R y$. Since $x R 0$ and $0 R y$, we also have $x R y$ (using the fact that R is transitive). Since R is symmetric we also have $y R x$. So, by definition, we have $x \in[y]$. Therefore, $[0] \subseteq[y]$.

I claim that also $[y] \subseteq[0]$. This can be proved in the same way as the previous claim. It follows that $[y]=[0]$. So, we have proved that for any even integer y, the equivalence class of y is the set of even integers. So, if E is the set of even integers, then

$$
E=[0]=[2]=[-2]=[4]=[-4]=\ldots
$$

Now, let's think about the equivalence class of the integer 1. We have

$$
\begin{aligned}
& {[1]=\{y \in \mathbb{Z}: 1 R y\}=\left\{y \in \mathbb{Z}: 1^{2}+y^{2} \text { is even }\right\}} \\
& =\left\{y \in \mathbb{Z}: 1+y^{2} \text { is even }\right\}=\{y \in \mathbb{Z}: y \text { is odd }\} .
\end{aligned}
$$

So, the equivalence class of 1 is the set of all odd integers. Moreover, we can show as above, that for any odd integer y, we have $[y]=[1]$. So if D denotes the set of odd integers, then

$$
D=[1]=[-1]=[3]=[-3]=[5]=[-5]=\ldots
$$

By almost the same proof as above, we can prove the following result about equivalence relation and equivalence classes.
5. Theorem. Suppose that R is an equivalence relation on A. Suppose that $v, w \in A$. If $w \in[v]$, then $[w]=[v]$.

Try to write a proof of this Theorem, proving that each of the two sets $[v]$ and $[w]$ is a subset of the other. I will include a proof in the lecture notes next time.

