Advanced Calculus I, Dr. Block, Chapter 3 notes

- 1. Definition. Suppose D is a subset of \mathbb{R} which is not bounded above. Let $f: D \to \mathbb{R}$, and let $L \in \mathbb{R}$. We say that $\lim_{x \to \infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists M > 0 such that $|f(x) L| < \epsilon$ for all $x \in D$ with $x \geq M$.
- 2. Theorem. Suppose D is a subset of \mathbb{R} which is not bounded above. Let $f: D \to \mathbb{R}$, and let $L \in \mathbb{R}$. Then $\lim_{x \to \infty} f(x) = L$ if and only if for every sequence $\{x_n\}$ of points in D such that $\lim_{n \to \infty} x_n = \infty$ we have $\lim_{n \to \infty} f(x_n) = L$.
 - 3. Example. Show that $\lim_{x\to\infty} \sin x$ does not exist.
 - 4. Example. Show that $\lim_{x\to\infty} \frac{1}{x} = 0$.
- 5. Definition. Suppose D is a subset of \mathbb{R} which is not bounded below. Let $f: D \to \mathbb{R}$, and let $L \in \mathbb{R}$. We say that $\lim_{x \to -\infty} f(x) = L$ if and only if for every $\epsilon > 0$ there exists M < 0 such that $|f(x) L| < \epsilon$ for all $x \in D$ with $x \leq M$.
- 6. Theorem. (sums, product quotients, roots, etc.) See Theorem 3.1.7 on page 120 of the text.
- 7. Definition. Suppose D is a subset of \mathbb{R} which is not bounded above. Let $f: D \to \mathbb{R}$. We say that $\lim_{x\to\infty} f(x) = \infty$ if and only if for every B > 0 there exists M > 0 such that f(x) > B for all $x \in D$ with $x \geq M$.
- 8. Definition. Suppose D is a subset of \mathbb{R} which is not bounded above. Let $f: D \to \mathbb{R}$. We say that $\lim_{x \to \infty} f(x) = -\infty$ if and only if for every B < 0 there exists M > 0 such that f(x) < B for all $x \in D$ with $x \ge M$.
- 9. Definition. Suppose D is a subset of \mathbb{R} which is not bounded below. Let $f: D \to \mathbb{R}$, and let $L \in \mathbb{R}$. We say that $\lim_{x \to -\infty} f(x) = \infty$ if and only if for every B > 0 there exists M < 0 such that f(x) > B for all $x \in D$ with $x \leq M$.
- 10. Definition. Suppose D is a subset of \mathbb{R} which is not bounded below. Let $f: D \to \mathbb{R}$, and let $L \in \mathbb{R}$. We say that $\lim_{x \to -\infty} f(x) = -\infty$ if and only if for every B < 0 there exists M < 0 such that f(x) < B for all $x \in D$ with $x \le M$.
- 11. Squeeze Theorem (different from statement in text). Suppose D is a subset of \mathbb{R} which is not bounded above. Let $f, g, h : D \to \mathbb{R}$. Suppose that there exists M > 0 such that

$$f(x) \le g(x) \le h(x).$$

for all $x \in D$ with $x \geq M$. Suppose also that

$$\lim_{x\to\infty} f(x) = A = \lim_{x\to\infty} h(x).$$

Then $\lim_{x\to\infty} g(x) = A$.

12. Theorem. Suppose that a > 0.

If a < 1, then $\lim_{x \to \infty} a^x = 0$.

If a = 1, then $\lim_{x \to \infty} a^x = 1$.

If a > 1, then $\lim_{x \to \infty} a^x = \infty$.

- 13. Definition. Suppose D is a subset of \mathbb{R} and $f:D\to\mathbb{R}$. Let $a\in\mathbb{R}$, and suppose that a is an accumulation point of D. Let $L\in\mathbb{R}$. We say that $\lim_{x\to a}f(x)=L$ if and only if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ for all $x\in D$ with $x\in N_{\delta}^-(a)$.
- 14. Definition. Suppose D is a subset of \mathbb{R} and $f: D \to \mathbb{R}$. Let $a \in \mathbb{R}$, and suppose that a is an accumulation point of D. We say that $\lim_{x\to a} f(x) = \infty$ if and only if for every B > 0 there exists $\delta > 0$ such that f(x) > B for all $x \in D$ with $x \in N_{\delta}^{-}(a)$.
- 15. Definition. Suppose D is a subset of \mathbb{R} and $f:D\to\mathbb{R}$. Let $a\in\mathbb{R}$, and suppose that a is an accumulation point of D. We say that $\lim_{x\to a} f(x) = -\infty$ if and only if for every B<0 there exists $\delta>0$ such that f(x)< B for all $x\in D$ with $x\in N_{\delta}^{-}(a)$.
- 16. Theorem (substitution). Suppose that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to b} g(x) = a$. Suppose that either f(a) = L or $g(x) \neq a$ for all x in some deleted neighborhood of b. Then

$$\lim_{x \to b} f(g(x)) = L.$$

- 17. Definition. Suppose D is a subset of \mathbb{R} and $f:D\to\mathbb{R}$. Let $a\in\mathbb{R}$, and suppose that a is an accumulation point of $D\cap(a,\infty)$. Let $L\in\mathbb{R}$. We say that $\lim_{x\to a^+}f(x)=L$ if and only if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ for all $x\in D$ with $x\in(N_{\delta}^-(a)\cap(a,\infty))$.
 - 18. Note. $N_{\delta}^{-}(a) \cap (a, \infty) = (a, a + \delta)$.
- 19. Definition. Suppose D is a subset of \mathbb{R} and $f: D \to \mathbb{R}$. Let $a \in \mathbb{R}$, and suppose that a is an accumulation point of $D \cap (a, \infty)$. We say that $\lim_{x \to a^+} f(x) = \infty$ if and only if for every B > 0 there exists $\delta > 0$ such that f(x) > B for all $x \in D$ with $x \in (N_{\delta}^-(a) \cap (a, \infty))$.
- 20. Definition. Suppose D is a subset of \mathbb{R} and $f:D\to\mathbb{R}$. Let $a\in\mathbb{R}$, and suppose that a is an accumulation point of $D\cap(a,\infty)$. We say that $\lim_{x\to a^+} f(x) = -\infty$ if and only if for every B<0 there exists $\delta>0$ such that f(x)< B for all $x\in D$ with $x\in(N_{\delta}^-(a)\cap(a,\infty))$.