Advanced Calculus I, Dr. Block, Chapter 4 notes

1. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let $a \in D$. We say that f is continuous at a if and only if for every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-f(a)|<\epsilon$ for all $x \in D$ with $|x-a|<\delta$.
2. Theorem. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let $a \in D$. Then f is continuous at a if and only if either one of the following hold:
(i). a is not an accumulation point of D.
(ii). a is an accumulation point of D, and $\lim _{x \rightarrow a} f(x)=f(a)$.
3. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. We say that f is continuous if and only if f is continuous at a for every $a \in D$.
4. Theorem. Let D be a subset of \mathbb{R}, and let $f, g: D \rightarrow \mathbb{R}$. Let $a \in D$. If f and g are continuous at a then so are $f+g, f-g, f \cdot g$. Also, if $g(a) \neq 0$, then $\frac{f}{g}$ is continuous at a.
5. Theorem. The following functions are continuous: polynomials, rational functions, sine function, cosine function, exponenial function, square root function, natural logarithm function, and arctan function.
6. Theorem. If f is continuous at a and g is continuous at $\mathrm{f}(\mathrm{a})$, then $g \circ f$ is continuous at a.
7. Theorem. Suppose that f is continuous at a. Let $\left\{t_{n}\right\}$ be a sequence of points in the domain of f such that $\lim _{n \rightarrow \infty} t_{n}=a$. Then $\lim _{n \rightarrow \infty} f\left(t_{n}\right)=f(a)$.
8. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let a be an accumulation point of D. We say that a is a point of discontinuity of f if either one of the following hold:
(i). $a \notin D$.
(ii). $a \in D$, but f is not continuous at a.
9. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let a be a point of discontinuity of f. We say that a is a point of removable discontinuity if either one of the following hold:
(i). $a \notin D$, and $\lim _{x \rightarrow a} f(x)=L$ for some $L \in \mathbb{R}$.
(ii). $a \in D$, and $\lim _{x \rightarrow a} f(x)=L$ for some $L \in \mathbb{R}$, but $L \neq f(a)$.
10. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let a be a point of discontinuity of f. We say that f has a jump discontinuity at $x=a$ if and only if there exists real numbers M and E with $M \neq E$ such that

$$
\lim _{x \rightarrow a^{-}} f(x)=M, \lim _{x \rightarrow a^{+}} f(x)=E .
$$

11. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let a be a point of discontinuity of f. We say that f has an infinite discontinuity at $x=a$ if and only if one of the following holds:
(i). $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ and $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$.
(ii). a is not an accumulation point of $D \cap(a, \infty)$ and $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$.
(ii). a is not an accumulation point of $D \cap(-\infty, a)$ and $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$.
12. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. Let a be a point of discontinuity of f. If none of the definitions $9,10,11$ apply to a, we call the discontinuity oscillating.
13. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. We say that f is bounded on D if and only if there is a real number B such that $|f(x)| \leq B$ for all $x \in D$.
14. Theorem. If a function f is continuous on a closed bounded interval $[a, b]$, then f is bounded on $[a, b]$.
15. Definition. Let D be a subset of \mathbb{R}, and let $f: D \rightarrow \mathbb{R}$. We say that f attains its maximum value on D if and only if there exists $v \in D$ such that $f(v) \geq f(x)$ for all $x \in D$. We say that f attains its minimum value on D if and only if there exists $w \in D$ such that $f(w) \leq f(x)$ for all $x \in D$.
16. Theorem. (Extreme Value Theorem) If a function f is continuous on a closed bounded interval $[a, b]$, then f attains its maximum and minimum values on $[a, b]$.
17. Theorem. (Intermediate Value Theorem) If a function f is continuous on a closed bounded interval $[a, b]$ and k is any real number between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ with $f(c)=k$.

Here the hypothesis " k is between $f(a)$ and $f(b)$ " means that
either $f(a)<k<f(b)$ or $f(a)>k>f(b)$.
18. Corollary. Suppose that a and b are real numbers with $a<b$. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and not constant, then the range of f is an interval $[c, d]$, where c and d are real numbers with $c<d$.

