
Advanced Calculus I, Dr. Block, Chapter 5 notes

1. Definition. Let D ⊆ R, and let f : D → R. Suppose that a ∈ D and also a is
an accumulation point of D. We say that f is differentiable at a if and only if the
limit

lim
x→a

f(x)− f(a)

x− a
exists and is finite. In this case we denote the limit by f ′(a), and we call this limit
the derivative of f at a.

2. Theorem. Let D ⊆ R, and let f : D → R. Suppose that a ∈ D and also a is
an accumulation point of D. If f is differentiable at a, then f is continuous at a.

3. Theorem. Let D ⊆ R, and let f, g : D → R. Suppose that f, g are differen-
tiable at x = a. Then f + g, f − g, f · g are differentiable at x = a, and also f

g is

differentiable at x = a provided that g(a) 6= 0, and

(f + g)′(a) = f ′(a) + g′(a)

(f − g)′(a) = f ′(a)− g′(a)

(f · g)′(a) = f(a) · g′(a) + g(a) · f ′(a)

(
f

g
)′(a) =

g(a) · f ′(a)− f(a) · g′(a)

(g(a))2
.

4. Theorem. If c is a real constant, and f(x) = c for all x ∈ R, then f ′(x) = 0
for all x ∈ R.

If f(x) = x for all x ∈ R, then f ′(x) = 1 for all x ∈ R.

If n is a positive integer, and f(x) = xn for all x ∈ R, then f ′(x) = nxn−1 for
all x ∈ R.

If r is a rational number and f(x) = xr for all x > 0, then f ′(x) = rxr−1 for all
x > 0.

If r is a real number and f(x) = xr for all x > 0, then f ′(x) = rxr−1 for all
x > 0.

If f(x) = sinx for all x ∈ R, then f ′(x) = cosx for all x ∈ R.

If f(x) = cosx for all x ∈ R, then f ′(x) = − sinx for all x ∈ R.

If f(x) = ex for all x ∈ R, then f ′(x) = ex for all x ∈ R.

If f(x) = lnx for all x > 0, then f ′(x) = 1
x for all x > 0.

5. Theorem. (Chain Rule) Suppose that f, g are real valued functions, a is a
real number, f is defined on some open interval containing a, and g is defined on
some open interval containing f(a). Suppose that f is differentiable at a and g is
differentiable at f(a). Then the composition g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) · f ′(a).



6. Definition. Let D ⊆ R, and let f : D → R. We say that f has a relative
(local) minimum at x = c if and only if c ∈ D and there exists δ > 0 such that
f(c) ≤ f(x) for all x ∈ (D ∩ (c− δ, c+ δ)).

7. Definition. Let D ⊆ R, and let f : D → R. We say that f has a relative
(local) maximum at x = c if and only if c ∈ D and there exists δ > 0 such that
f(c) ≥ f(x) for all x ∈ (D ∩ (c− δ, c+ δ)).

8. Definition. Let D ⊆ R, and let f : D → R. We say that f has a relative
(local) extremum at x = c if and only if either f has a relative (local) minimum at
x = c or f has a relative (local) maximum at x = c

9. Theorem. Let D ⊆ R, and let f : D → R. Suppose that f has a relative
extremum at x = c. Also, suppose that there is an open interval (a, b) with c ∈
(a, b) ⊆ D. Finally, suppose that f is differentiable at c. Then f ′(c) = 0.

10. Definition. Let D ⊆ R, and let f : D → R. We say that f is differentiable if
and only if f is differentiable at a for each a ∈ D.

11. Theorem. (Inverse Function Theorem) Let I be an open interval, and sup-
pose that f : I → R is differentiable. Suppose that for each x ∈ I, f ′(x) 6= 0.
Then:

(a) f(I) is an open interval and f : I → f(I) is a bijection

(b) f is either strictly increasing or strictly decreasing on I. In the first case,
f ′(x) > 0 for all x ∈ I; in the second case f ′(x) < 0 for all x ∈ I.

(c) f−1 is differentiable on f(I)

(d) for each y ∈ f(I) we have (f−1)′(y) = 1
f ′(x) , where x = f−1(y).

12. Theorem. (Rolle’s Theorem) Suppose that f : [a, b]→ R satisfies:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

(3) f(a) = f(b).

Then there exists c ∈ (a, b) such that f ′(c) = 0.

13. Theorem. (Mean Value Theorem) Suppose that f : [a, b]→ R satisfies:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

14. Corollary. Suppose that f : [a, b]→ R satisfies:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

If f ′(x) = 0 on (a, b), then f is constant on [a, b].



15. Corollary. Suppose that f : [a, b]→ R and g : [a, b]→ R satisfy:

(1) f and g are continuous on [a, b].

(2) f and g are differentiable on (a, b).

If f ′(x) = g′(x) for all x ∈ (a, b), then there is a real number k such that
f(x)− g(x) = k for all x ∈ [a, b].

16. Theorem. Suppose that f is differentiable on (a, b). Then f ′(x) ≥ 0 on (a, b)
if and only if f is increasing on (a, b).

17. Theorem. Suppose that f is differentiable on (a, b). Then f ′(x) ≤ 0 on (a, b)
if and only if f is decreasing on (a, b).

18. Theorem. Suppose that f is differentiable on (a, b). If f ′(x) > 0 on (a, b),
then f is strictly increasing on (a, b).

19. Theorem. Suppose that f is differentiable on (a, b). If f ′(x) < 0 on (a, b),
then f is strictly decreasing on (a, b).

20. Theorem. Suppose that f : [a, b]→ R satisfies:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

If f ′(x) > 0 on (a, b), then f is strictly increasing on [a, b].

21. Theorem. Suppose that f : [a, b]→ R satisfies:

(1) f is continuous on [a, b].

(2) f is differentiable on (a, b).

If f ′(x) < 0 on (a, b), then f is strictly decreasing on [a, b].

22. Theorem. (First Derivative Test) Suppose that a < c < b, and f is a real
valued function which is continuous on [a, b]. Suppose also that f is differentiable
on each of the intervals (a, c) and (c, b).

(1) If f ′(x) > 0 for all x ∈ (a, c) and f ′(x) < 0 for all x ∈ (c, b), then f has a
relative maximum at c.

(2) If f ′(x) < 0 for all x ∈ (a, c) and f ′(x) > 0 for all x ∈ (c, b), then f has a
relative minimum at c.

23. Definition. Let E ⊆ R, and let f : E → R. Let D denote the set of points
x ∈ E such that f is differentiable at x. Suppose that a ∈ D and also a is an
accumulation point of D. If the limit

lim
x→a

f ′(x)− f ′(a)

x− a

exists and is finite, we denote the limit by f ′′(a), and we call this limit the second
derivative of f at a. Higher derivatives are defined inductively in the same way. We
use the notation f (n)(a) to denote the n-th derivative of f at a.



24. Definition. The nth Taylor polynomial centered about x = a is:

pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

25. Theorem. Suppose that f has n+ 1 derivatives in a neighborhood of a. Let
x 6= a be in this neighborhood. Then there exists c between x and a such that

f(x) = pn(x) +Rn(x)

where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

26. Theorem. (Second Derivative Test) Suppose that f ′′ is continuous on an
open interval containing a point c with f ′(c) = 0.

(a) If f ′′(c) > 0, then f has a relative minimum at c.
(b) If f ′′(c) < 0, then f has a relative maximum at c.

27. Theorem. (one form of L’Hopital’s rule). Suppose that f and g are differen-
tiable on (a, b). Suppose that

lim
x→b−

f(x) = 0 = lim
x→b−

g(x).

Finally, suppose that g′(x) 6= 0 for all x ”near” b. This means that there exists
δ > 0 such that g′(x) 6= 0 for all x ∈ (b − δ, b). Let L ∈ R, L = ∞ or L = −∞. If

limx→b−
f ′(x)
g′(x) = L, then limx→b−

f(x)
g(x) = L.

28. Theorem. (another form of L’Hopital’s rule). Suppose that f and g are
differentiable on (a, b). Suppose that

lim
x→b−

f(x) = ±∞ = lim
x→b−

g(x).

Finally, suppose that g′(x) 6= 0 for all x ”near” b. This means that there exists
δ > 0 such that g′(x) 6= 0 for all x ∈ (b − δ, b). Let L ∈ R, L = ∞ or L = −∞. If

limx→b−
f ′(x)
g′(x) = L, then limx→b−

f(x)
g(x) = L.

29. Theorem. (other forms of L’Hopital’s rule). The previous two theorems are
also valid for one-sided limits from the right, two-sided limits, limits as x → ∞,
and limits as x→ −∞.

30. Remark. Note that each of the following is an indeterminate form:

0

0
,
±∞
±∞

, 0 · ∞, ∞−∞, 1∞, ∞0, 00


