Advanced Calculus I, Dr. Block, Chapter 5 notes

1. Definition. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. Suppose that $a \in D$ and also a is an accumulation point of D. We say that f is differentiable at a if and only if the limit

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists and is finite. In this case we denote the limit by $f^{\prime}(a)$, and we call this limit the derivative of f at a.
2. Theorem. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. Suppose that $a \in D$ and also a is an accumulation point of D. If f is differentiable at a, then f is continuous at a.
3. Theorem. Let $D \subseteq \mathbb{R}$, and let $f, g: D \rightarrow \mathbb{R}$. Suppose that f, g are differentiable at $x=a$. Then $f+g, f-g, f \cdot g$ are differentiable at $x=a$, and also $\frac{f}{g}$ is differentiable at $x=a$ provided that $g(a) \neq 0$, and

$$
\begin{gathered}
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a) \\
(f-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a) \\
(f \cdot g)^{\prime}(a)=f(a) \cdot g^{\prime}(a)+g(a) \cdot f^{\prime}(a) \\
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{g(a) \cdot f^{\prime}(a)-f(a) \cdot g^{\prime}(a)}{(g(a))^{2}} .
\end{gathered}
$$

4. Theorem. If c is a real constant, and $f(x)=c$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.

If $f(x)=x$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$.
If n is a positive integer, and $f(x)=x^{n}$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=n x^{n-1}$ for all $x \in \mathbb{R}$.

If r is a rational number and $f(x)=x^{r}$ for all $x>0$, then $f^{\prime}(x)=r x^{r-1}$ for all $x>0$.

If r is a real number and $f(x)=x^{r}$ for all $x>0$, then $f^{\prime}(x)=r x^{r-1}$ for all $x>0$.

If $f(x)=\sin x$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=\cos x$ for all $x \in \mathbb{R}$.
If $f(x)=\cos x$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=-\sin x$ for all $x \in \mathbb{R}$.
If $f(x)=e^{x}$ for all $x \in \mathbb{R}$, then $f^{\prime}(x)=e^{x}$ for all $x \in \mathbb{R}$.
If $f(x)=\ln x$ for all $x>0$, then $f^{\prime}(x)=\frac{1}{x}$ for all $x>0$.
5. Theorem. (Chain Rule) Suppose that f, g are real valued functions, a is a real number, f is defined on some open interval containing a, and g is defined on some open interval containing $f(a)$. Suppose that f is differentiable at a and g is differentiable at $f(a)$. Then the composition $g \circ f$ is differentiable at a and

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)
$$

6. Definition. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. We say that f has a relative (local) minimum at $x=c$ if and only if $c \in D$ and there exists $\delta>0$ such that $f(c) \leq f(x)$ for all $x \in(D \cap(c-\delta, c+\delta))$.
7. Definition. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. We say that f has a relative (local) maximum at $x=c$ if and only if $c \in D$ and there exists $\delta>0$ such that $f(c) \geq f(x)$ for all $x \in(D \cap(c-\delta, c+\delta))$.
8. Definition. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. We say that f has a relative (local) extremum at $x=c$ if and only if either f has a relative (local) minimum at $x=c$ or f has a relative (local) maximum at $x=c$
9. Theorem. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. Suppose that f has a relative extremum at $x=c$. Also, suppose that there is an open interval (a, b) with $c \in$ $(a, b) \subseteq D$. Finally, suppose that f is differentiable at c. Then $f^{\prime}(c)=0$.
10. Definition. Let $D \subseteq \mathbb{R}$, and let $f: D \rightarrow \mathbb{R}$. We say that f is differentiable if and only if f is differentiable at a for each $a \in D$.
11. Theorem. (Inverse Function Theorem) Let I be an open interval, and suppose that $f: I \rightarrow \mathbb{R}$ is differentiable. Suppose that for each $x \in I, f^{\prime}(x) \neq 0$. Then:
(a) $f(I)$ is an open interval and $f: I \rightarrow f(I)$ is a bijection
(b) f is either strictly increasing or strictly decreasing on I. In the first case, $f^{\prime}(x)>0$ for all $x \in I$; in the second case $f^{\prime}(x)<0$ for all $x \in I$.
(c) f^{-1} is differentiable on $f(I)$
(d) for each $y \in f(I)$ we have $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}$, where $x=f^{-1}(y)$.
12. Theorem. (Rolle's Theorem) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies:
(1) f is continuous on $[a, b]$.
(2) f is differentiable on (a, b).
(3) $f(a)=f(b)$.

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
13. Theorem. (Mean Value Theorem) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies:
(1) f is continuous on $[a, b]$.
(2) f is differentiable on (a, b).

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
14. Corollary. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies:
(1) f is continuous on $[a, b]$.
(2) f is differentiable on (a, b).

If $f^{\prime}(x)=0$ on (a, b), then f is constant on $[a, b]$.
15. Corollary. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ satisfy:
(1) f and g are continuous on $[a, b]$.
(2) f and g are differentiable on (a, b).

If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then there is a real number k such that $f(x)-g(x)=k$ for all $x \in[a, b]$.
16. Theorem. Suppose that f is differentiable on (a, b). Then $f^{\prime}(x) \geq 0$ on (a, b) if and only if f is increasing on (a, b).
17. Theorem. Suppose that f is differentiable on (a, b). Then $f^{\prime}(x) \leq 0$ on (a, b) if and only if f is decreasing on (a, b).
18. Theorem. Suppose that f is differentiable on (a, b). If $f^{\prime}(x)>0$ on (a, b), then f is strictly increasing on (a, b).
19. Theorem. Suppose that f is differentiable on (a, b). If $f^{\prime}(x)<0$ on (a, b), then f is strictly decreasing on (a, b).
20. Theorem. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies:
(1) f is continuous on $[a, b]$.
(2) f is differentiable on (a, b).

If $f^{\prime}(x)>0$ on (a, b), then f is strictly increasing on $[a, b]$.
21. Theorem. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ satisfies:
(1) f is continuous on $[a, b]$.
(2) f is differentiable on (a, b).

If $f^{\prime}(x)<0$ on (a, b), then f is strictly decreasing on $[a, b]$.
22. Theorem. (First Derivative Test) Suppose that $a<c<b$, and f is a real valued function which is continuous on $[a, b]$. Suppose also that f is differentiable on each of the intervals (a, c) and (c, b).
(1) If $f^{\prime}(x)>0$ for all $x \in(a, c)$ and $f^{\prime}(x)<0$ for all $x \in(c, b)$, then f has a relative maximum at c.
(2) If $f^{\prime}(x)<0$ for all $x \in(a, c)$ and $f^{\prime}(x)>0$ for all $x \in(c, b)$, then f has a relative minimum at c.
23. Definition. Let $E \subseteq \mathbb{R}$, and let $f: E \rightarrow \mathbb{R}$. Let D denote the set of points $x \in E$ such that f is differentiable at x. Suppose that $a \in D$ and also a is an accumulation point of D. If the limit

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}
$$

exists and is finite, we denote the limit by $f^{\prime \prime}(a)$, and we call this limit the second derivative of f at a. Higher derivatives are defined inductively in the same way. We use the notation $f^{(n)}(a)$ to denote the n-th derivative of f at a.
24. Definition. The nth Taylor polynomial centered about $x=a$ is:

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

25. Theorem. Suppose that f has $n+1$ derivatives in a neighborhood of a. Let $x \neq a$ be in this neighborhood. Then there exists c between x and a such that

$$
f(x)=p_{n}(x)+R_{n}(x)
$$

where

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} .
$$

26. Theorem. (Second Derivative Test) Suppose that $f^{\prime \prime}$ is continuous on an open interval containing a point c with $f^{\prime}(c)=0$.
(a) If $f^{\prime \prime}(c)>0$, then f has a relative minimum at c.
(b) If $f^{\prime \prime}(c)<0$, then f has a relative maximum at c.
27. Theorem. (one form of L'Hopital's rule). Suppose that f and g are differentiable on (a, b). Suppose that

$$
\lim _{x \rightarrow b^{-}} f(x)=0=\lim _{x \rightarrow b^{-}} g(x) .
$$

Finally, suppose that $g^{\prime}(x) \neq 0$ for all x "near" b. This means that there exists $\delta>0$ such that $g^{\prime}(x) \neq 0$ for all $x \in(b-\delta, b)$. Let $L \in \mathbb{R}, L=\infty$ or $L=-\infty$. If $\lim _{x \rightarrow b^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then $\lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=L$.
28. Theorem. (another form of L'Hopital's rule). Suppose that f and g are differentiable on (a, b). Suppose that

$$
\lim _{x \rightarrow b^{-}} f(x)= \pm \infty=\lim _{x \rightarrow b^{-}} g(x) .
$$

Finally, suppose that $g^{\prime}(x) \neq 0$ for all x "near" b. This means that there exists $\delta>0$ such that $g^{\prime}(x) \neq 0$ for all $x \in(b-\delta, b)$. Let $L \in \mathbb{R}, L=\infty$ or $L=-\infty$. If $\lim _{x \rightarrow b^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then $\lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=L$.
29. Theorem. (other forms of L'Hopital's rule). The previous two theorems are also valid for one-sided limits from the right, two-sided limits, limits as $x \rightarrow \infty$, and limits as $x \rightarrow-\infty$.
30. Remark. Note that each of the following is an indeterminate form:

$$
\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}, 0 \cdot \infty, \infty-\infty, 1^{\infty}, \infty^{0}, 0^{0}
$$

