Advanced Calculus, Dr. Block, Chapter 6 notes, 2-9-2020

1. Definitions. As a standing hypothesis, we suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function.

A partition of $[a, b]$ is a finite set of points $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ with

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

A partition Q is a refinement of a partition P if and only if $P \subseteq Q$.
Given f and P as above we define

$$
U(P, f)=\sum_{k=1}^{n} M_{k} \Delta x_{k}, \quad L(P, f)=\sum_{k=1}^{n} m_{k} \Delta x_{k},
$$

where

$$
M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}, \quad m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\},
$$

and $\Delta x_{k}=x_{k}-x_{k-1}$.
We call $U(P, f)$ the upper sum, and $L(P, f)$ the lower sum. Also, the maximum value of all of the Δx_{k} is called the norm of the partition P.

For any points $c_{1} \in\left[x_{0}, x_{1}\right], c_{2} \in\left[x_{1}, x_{2}\right], \ldots c_{n} \in\left[x_{n-1}, x_{n}\right]$ the expresion

$$
S(P, f)=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
$$

is called a Riemann sum.
2. Proposition. There exist real numbers m, M such that for any partition P of [$a, b]$ and any Riemann sum $S(P, f)$ we have

$$
m(b-a) \leq L(P, f) \leq S(P, f) \leq U(P, f) \leq M(b-a)
$$

3. Proposition. If Q is a refinement of P then

$$
L(P, f) \leq L(Q, f) \leq U(Q, f) \leq U(P, f) .
$$

4. Proposition. For any partitions P, Q of $[a, b]$ we have $L(P, f) \leq U(Q, f)$.
5. Definition and Remark. We define the lower integral to be the supremum of all the real numbers $L(P, f)$ for all partitions P of $[a, b]$. The lower integral is denoted by $\underline{\int_{a}^{b} f}$. We define the upper integral to be the infimum of all the real numbers $U(P, f)$ for all partitions P of $[a, b]$. The upper integral is denoted by $\overline{\int_{a}^{b} f}$.

We say that f is Riemann integrable on $[a, b]$ if and only if the lower integral is equal to the upper integral, and denote the common value by $\int_{a}^{b} f$.

We remark that for any partitions P and Q of $[a, b]$ we have

$$
L(P, f) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U(Q, f) .
$$

So f is Riemann integrable on $[a, b]$ if and only if $\overline{\int_{a}^{b}} f \leq \int_{a}^{b} f$.
6. Theorem. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function. f is Riemann integrable if and only if for every $\epsilon>0$, there is a partition P such that

$$
U(P, f)-L(P, f)<\epsilon .
$$

7. Notation: We will denote the set of Riemann integrable functions $f:[a, b] \rightarrow \mathbb{R}$ by $R[a, b]$.
8. Theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is monotone, then $f \in R[a, b]$.
9. Theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $f \in R[a, b]$.

We remark that for the proof of Theorem 9 we need the following Definition and Theorem:

Definition: Suppose that $D \subseteq \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$. We say that f is uniformly continuous if and only if for every $\epsilon>0$ there exists $\delta>0$ such that for every pair of points $x, t \in D$, if $|x-t|<\delta$ then $|f(x)-f(t)|<\epsilon$.

Theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous.
10. Theorem. Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. $f \in R[a, b]$ if and only if there exists a real number A such that for every $\epsilon>0$, there exists $\delta>0$ such that for any Riemann sum, $S(P, f)$, associated with a partition P, whose norm is less than δ we have $|S(P, f)-A|<\epsilon$.

Moreover, in this case $A=\int_{a}^{b} f$.
11. Corollary. Suppose that $f \in R[a, b]$. Let $\left\{P_{n}\right\}$ be a sequence of partitions of $[a, b]$ whose norm converges to zero. Suppose that for each positive integer n, $S\left(P_{n}, f\right)$ is a Riemann sum associated to the partition P_{n}. Then

$$
\lim _{n \rightarrow \infty} S\left(P_{n}, f\right)=\int_{a}^{b} f
$$

12. Theorem. Suppose that $f, g \in R[a, b]$ and c is a real number. Then:
(a) $f+g \in R[a, b]$, and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$.
(b) $c f \in R[a, b]$, and $\int_{a}^{b}(c f)=c \int_{a}^{b} f$.
13. Theorem. If $f, g \in R[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
14. Theorem. Suppose that $f \in R[a, b]$ and $f([a, b]) \subseteq[c, d]$. If g is continuous on $[c, d]$, then $g \circ f \in R[a, b]$.
15. Corollary. Suppose that $f, g \in R[a, b]$. Let n be a positive integer. Then
(a) $f^{n} \in R[a, b]$.
(b) $f \cdot g \in R[a, b]$.
16. Theorem. If $f \in R[a, b]$, then $|f| \in R[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.
17. Theorem (one form of the mean value theorem for integrals). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there exists $c \in(a, b)$ such that

$$
\int_{a}^{b} f=f(c)(b-a)
$$

18. Theorem. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is bounded. Then $f \in R[a, b]$ if and only if the set of points at which f is discontinuous has Lebesgue measure zero.

Definition. A set S has Lebesgue measure zero if and only if for every $\epsilon>0$ there is a finite or countably infinite collection $\left\{D_{i}\right\}$ of open intervals such that S is a subset of the union on the D_{i} and the sum of the lengths of the D_{i} is less that ϵ.

Note that any set which is either finite or countably infinite has Lebesgue measure zero.
19. Theorem. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is bounded, and let $c \in(a, b)$. Then $f \in R[a, b]$ if and only if $f \in R[a, c]$ and $f \in R[c, b]$. In this case

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

20. Theorem. (Fundamental Theorem of Calculus) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x) \in R[a, b]$. Then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

21. Theorem. Suppose that $f \in R[a, b]$. Define a function $F:[a, b] \rightarrow \mathbb{R}$ by $F(x)=\int_{a}^{x} f$. Then F is uniformly continuous.
22. Theorem. Suppose that $f \in R[a, b]$. Define a function $F:[a, b] \rightarrow \mathbb{R}$ by $F(x)=\int_{a}^{x} f$. Suppose that $c \in[a, b]$. If f is continuous at c, then F is differentiable at c and $F^{\prime}(c)=f(c)$.
23. Theorem. (Change of variables) Suppose that $g:[c, d] \rightarrow[a, b]$ is differentiable with $g(c)=a$ and $g(d)=b$. Suppose also that $g^{\prime} \in R[c, d]$. Finally, suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then

$$
\int_{c}^{d}(f \circ g) \cdot g^{\prime}=\int_{a}^{b} f
$$

24. Theorem. Suppose that $g:[c, d] \rightarrow[a, b]$ is differentiable, and $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Define $H:[c, d] \rightarrow \mathbb{R}$ by

$$
H(x)=\int_{a}^{g(x)} f(t) d t
$$

Then H is differentiable and $H^{\prime}(x)=(f(g(x))) \cdot g^{\prime}(x)$.
25. Theorem. (Integration by parts) Suppose that $f, g:[a, b] \rightarrow \mathbb{R}$ are differentiable and $f^{\prime}, g^{\prime} \in R[a, b]$. Then

$$
\int_{a}^{b} f \cdot g^{\prime}=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime} \cdot g
$$

26. Theorem. If f is continuous on \mathbb{R} and g and h are differentiable on \mathbb{R}, then

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)
$$

27. Definition. Let $a \in \mathbb{R}$, and let $f:[a, \infty) \rightarrow \mathbb{R}$. Suppose that f is Riemann integrable on $[a, b]$ for each $b>a$. If $\lim _{b \rightarrow \infty} \int_{a}^{b} f$ exists and is some real number L, then we say that the improper integral $\int_{a}^{\infty} f$ converges to L and write $\int_{a}^{\infty} f=L$.
28. Definition. Let $a, b \in \mathbb{R}$ with $a<b$, and let $f:(a, b] \rightarrow \mathbb{R}$ be a function which is not bounded. Suppose that f is Riemann integrable on $[c, b]$ for each c in the open interval (a, b). If $\lim _{c \rightarrow a^{+}} \int_{c}^{b} f$ exists and is some real number L, then we say that the improper integral $\int_{a}^{b} f$ converges to L and write $\int_{a}^{b} f=L$.
29. Theorem. Let $a \in \mathbb{R}$, and let $f:[a, \infty) \rightarrow \mathbb{R}$. Suppose that f is nonnegative, and f is Riemann integrable on $[a, b]$ for each $b>a$. Suppose that there exists $M>0$ such that $\int_{a}^{b} f \leq M$ for all $b>a$. Then $\int_{a}^{\infty} f$ converges.
30. Theorem. (Comparison test) Let $a \in \mathbb{R}$, and let $f, g:[a, \infty) \rightarrow \mathbb{R}$. Suppose that both f and g are Riemann integrable on $[a, b]$ for each $b>a$. Suppose that $0 \leq f(x) \leq g(x)$ for all $x \geq a$. If $\int_{a}^{\infty} g$ converges, then $\int_{a}^{\infty} f$ also converges.
31. Definition. Let $a \in \mathbb{R}$, and let $f:[a, \infty) \rightarrow \mathbb{R}$. Suppose that f is Riemann integrable on $[a, b]$ for each $b>a$. We say that $\int_{a}^{\infty} f$ converges absolutely if and only if $\int_{a}^{\infty}|f|$ converges.
32. Theorem. Let $a \in \mathbb{R}$, and let $f:[a, \infty) \rightarrow \mathbb{R}$. Suppose that f is Riemann integrable on $[a, b]$ for each $b>a$. If $\int_{a}^{\infty} f$ converges absolutely, then $\int_{a}^{\infty} f$ converges.
