Advanced Calculus I, Dr. Block, Chapter 2 notes

1. Theorem. (Archimedean Property) Let = be any real number. There exists a
positive integer n* greater than .

2. Definition. A sequence is a real-valued function whose domain consists of all
integers which are greater than or equal to some fixed integer (which is often 1).
The notation {a,} is used.

3. Definition. We say that a sequence {a,} converges to a real number L if and
only if for every e > 0, there exists a positive integer n* such that for all n > n*
we have |a, — L| < €. The real number L is called the limit of the sequence and we
write

lim a, = L.
n— o0

We also say that the sequence is convergent.

If there is no real number L as above, we say that the sequence diverges or is
divergent.

4. Problem. Prove using the definition that lz’mn_mo% =0.

Formal Proof. Let € > 0. By the Archimedean Property there exists a positive
integer n* > % If n > n* we have
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5. Problem. Prove using the definition that limn_wong—zl =0.
Preliminary consideration: We want |n311 — 0] < e for n > n*. We see that
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Also we will have % <eifn> %

Formal Proof. Let € > 0. By the Archimedean Property there exists a positive
integer n* > % If n > n* we have
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6. Note. A sequence {a,} diverges if and only if for every real number L
there exists € > 0 such that for every positive integer n* there exists n > n* with
la, — L| > e.

7. Theorem. Any two limits of a convergent sequence are the same. (If a
sequence converges, then the limit of the sequence is unique.)

8. Definition. We say that a sequence {a,} is bounded if and only if there is a
real number B such that |a,| < B for all n.



9. Theorem. Any convergent sequence is bounded.

10. Theorem. If lim,, . a,, = A and lim,,_,, b, = B with A, B € R, then
1. lim, oo a, +b, = A+ B.

2. lim,,,a, — b, = A— B.

3. lim, o ay, b, =A-B.

4. limy o0 2 = 4, if B #0,

5. lim,_o0(an,)? = AP, for any positive rational number p, provided that the
"roots” are defined.

11. Theorem. (Squeeze Theorem) Suppose that {ay}, {b,}, and {c,} are se-
quences, and suppose that there exists a positive integer K such that if n > K,
then a,, < b, < ¢,. Suppose that for some real number L

lim a, = L = lim ¢,.
n—oo n—oo

Then lim,,_ o b, = L.

12. Theorem. If a sequence {a,,} converges to 0 and a sequence {b,, } is bounded,
then the sequence {a,, - b, } converges to 0.

13. Theorem. (Special limits to remember and use.)

1. If p > 0, then lim,_,o — = 0.

2. If |r| < 1, then lim,_, o r™ = 0.

3. If ¢ > 0, then lim,,_, ¥c=1.

4. lim, o ¥n = 1.

5. If lim,, o a,, = 0, then lim,,_, o sin(a,) = 0.
6. If lim,, _,~, a, = 0, then lim,, % = 1.

14. Definition. We say the sequence {a,,} diverges to oo if and only if for every
M > 0, there is a positive integer n* such that for all n > n* we have a,, > M. In
this case we write

lim a,, = co.
n— o0

15. Definition. We say the sequence {a,} diverges to —oo if and only if for every
M < 0, there is a positive integer n* such that for all n > n* we have a,, < M. In
this case we write

lim a,, = —o0.
n—oo



16. Theorem. If lim,, ., a,, = co and there exists a positive integer K such that
b, > a, for all n > K, then lim,,_,., b, = oco.

17. Theorem. If lim, .., a, = —o0 and there exists a positive integer K such
that b,, < a,, for all n > K, then lim,,_, b, = —oc.

18. Theorem. Suppose that lim,,_, a, = oco.

1. If {b,} is bounded below, then lim,, o (a, + by,) = occ.

2. If {b,} converges or diverges to oo, then lim,,_, o (an, + b,) = 0.

3. If {b,,} is bounded below by a positive number, then lim,,_,(a, - b,) = oo.
4

. If {b,} converges to a positive number or diverges to oo, then

nh—{%o(an - by) = o0.

5. If {b,} converges to a negative number or diverges to —oo, then

nh—%lo(a” cbp) = —00.

19. Theorem.

1. If lim,, o a, = 0o, then lim,, ., i =0.

2. If limy, 00 ==

n

=0 and a,, > 0 for all n sufficiently large, then

lim a, = cc.
n— o0

3. If limy, o0 = = 0 and a,, <0 for all n sufficiently large, then

lim a,, = —o0.
n—oo

20. Theorem. (Ratio Test) Suppose that {a,} is a sequence of nonzero real
numbers such that

lim |27

n—oo Gy

where either a € R or a = oo.
1. If a < 1, then lim,, ,, a,, = 0.

2. If @ > 1, then lim,,_, |a,| = 00, so the sequence {a, } diverges.

21. Definition. We say that a sequence {a, } oscillates if and only if none of the
three statements below hold.

1. lim,,—y oo a, = L for some L € R.



2. lim,,_yoo a,, = 00.

3. lim,, o a,, = —00.

22. Definition. We say that a sequence {a,} is increasing if and only if n < k
implies a, < ag.

23. Remark. A sequence {a,} is increasing if and only if for all n we have
G S Qp41-

24. Remark. A sequence {a,} of positive real numbers is increasing if and only

if for all n we have 22+ > 1.

25. Definition. We say that a sequence {a,,} is eventually increasing if and only
if there is a positive integer n* such that n* < n < k implies a,, < ay.

26. Definition. We say that a sequence {a,} is decreasing if and only if n < k
implies a,, > ag.

27. Remark. A sequence {a,} is decreasing if and only if for all n we have
Gn Z An4-1-

28. Remark. A sequence {a,} of positive real numbers is decreasing if and only

if for all n we have a;“ <1.

29. Definition. We say that a sequence {a,,} is eventually decreasing if and only
if there is a positive integer n* such that n* < n < k implies a,, > ay.

30. Theorem. A bounded, increasing sequence converges. An unbounded, in-
creasing sequence diverges to oo.

31. Theorem. A bounded, decreasing sequence converges. An unbounded, de-
creasing sequence diverges to —oo.

32. Definition. We say that a sequence {a,} is monotone if and only if either
{a,} is increasing or {a, } is decreasing.

33. Definition. Let € > 0, and let s € R. The e-neighborhood of s is
N(s)={zeR:|x—s|<e}=(s—¢s+¢).
The deleted e-neighborhood of s is

No(s)={zeR:0< |z —s|<e}=(s—¢€5)U(s,s+e).

€

34. Definition. Let § C R, and let w € R. We say that w is an accumulation
point of S if and only if every deleted neighborhood of w contains at least one point

of S.



35. Theorem. Let S C R, and let w € R. Then w is an accumulation point of S
if and only if every neighborhood of w contains infinitely many points of S.

36. Theorem. (Bolzano-Weierstrass Theorem for sets) Every bounded infinite
subset of R has at least one accumulation point.

37. Definition. We say that a sequence {a,} is a Cauchy sequence if and only
if for every e > 0, there exists a positive integer n* such that for all k,j > n* we
have |a — a;| < e.

38. Theorem. Let {a,} be a sequence of real numbers. Then {a,} is a Cauchy
sequence if and only if {a,} converges.

39. Definition. The sequence {by};2; is a subsequence of the sequence {a,};2 ;

if and only if there exists a strictly increasing function
f{lxeN:xz>i} > {zeN:z>j}

such that b, = ay(y) for all n € N with n > 1.
We sometimes use the notation by = a,, for a subsequence. In this case, ng
must be a strictly increasing function of k.

40. Theorem. (Bolzano-Weierstrass Theorem for sequences) Every bounded
sequence in R has at least one convergent subsequence.

41. Definition. We let E denote the set of extended real numbers defined by

E=RU{oo} U{—0o0}.

42. Definition. Let {a,} be a sequence of real numbers, and let A € E. We say
that A is a subsequential limit point of the sequence {a,} if and only if there is a
subsequence ay, of {a,} such that

lim a,, = A.
k— o0

43. Theorem. Let {a,} be a sequence of real numbers. There exists a largest
subsequential limit point of the sequence and a smallest subsequential limit point
of the sequence.

44. Definition. Let {a,} be a sequence of real numbers. The largest subse-
quential limit point of the sequence is denoted by limsup,,_, ., a,. The smallest
subsequential limit point of the sequence is denoted by liminf,, . a,.

45. Theorem. Let {a,} be a sequence of real numbers, and let A € E. Then
lim,, o0 an, = A if and only if A =limsup,,_, . a, = liminf,,_, a,.



