
Advanced Calculus I, Dr. Block, Chapter 2 notes

1. Theorem. (Archimedean Property) Let x be any real number. There exists a
positive integer n∗ greater than x.

2. Definition. A sequence is a real-valued function whose domain consists of all
integers which are greater than or equal to some fixed integer (which is often 1).
The notation {an} is used.

3. Definition. We say that a sequence {an} converges to a real number L if and
only if for every ε > 0, there exists a positive integer n∗ such that for all n ≥ n∗

we have |an −L| < ε. The real number L is called the limit of the sequence and we
write

lim
n→∞

an = L.

We also say that the sequence is convergent.
If there is no real number L as above, we say that the sequence diverges or is

divergent.

4. Problem. Prove using the definition that limn→∞
1
n = 0.

Formal Proof. Let ε > 0. By the Archimedean Property there exists a positive
integer n∗ > 1

ε . If n ≥ n∗ we have

| 1
n
− 0| = 1

n
≤ 1

n∗
< ε.

5. Problem. Prove using the definition that limn→∞
5n
n2+1 = 0.

Preliminary consideration: We want | 5n
n2+1 − 0| < ε for n ≥ n∗. We see that

| 5n

n2 + 1
− 0| = 5n

n2 + 1
≤ 5n

n2
=

5

n
.

Also we will have 5
n < ε if n > 5

ε .

Formal Proof. Let ε > 0. By the Archimedean Property there exists a positive
integer n∗ > 5

ε . If n ≥ n∗ we have

| 5n

n2 + 1
− 0| = 5n

n2 + 1
≤ 5n

n2
=

5

n
≤ 5

n∗
< ε.

6. Note. A sequence {an} diverges if and only if for every real number L
there exists ε > 0 such that for every positive integer n∗ there exists n ≥ n∗ with
|an − L| ≥ ε.

7. Theorem. Any two limits of a convergent sequence are the same. (If a
sequence converges, then the limit of the sequence is unique.)

8. Definition. We say that a sequence {an} is bounded if and only if there is a
real number B such that |an| ≤ B for all n.



9. Theorem. Any convergent sequence is bounded.

10. Theorem. If limn→∞ an = A and limn→∞ bn = B with A,B ∈ R, then

1. limn→∞ an + bn = A+B.

2. limn→∞ an − bn = A−B.

3. limn→∞ an · bn = A ·B.

4. limn→∞
an
bn

= A
B , if B 6= 0.

5. limn→∞(an)p = Ap, for any positive rational number p, provided that the
”roots” are defined.

11. Theorem. (Squeeze Theorem) Suppose that {an}, {bn}, and {cn} are se-
quences, and suppose that there exists a positive integer K such that if n ≥ K,
then an ≤ bn ≤ cn. Suppose that for some real number L

lim
n→∞

an = L = lim
n→∞

cn.

Then limn→∞ bn = L.

12. Theorem. If a sequence {an} converges to 0 and a sequence {bn} is bounded,
then the sequence {an · bn} converges to 0.

13. Theorem. (Special limits to remember and use.)

1. If p > 0, then limn→∞
1
np = 0.

2. If |r| < 1, then limn→∞ rn = 0.

3. If c > 0, then limn→∞
n
√
c = 1.

4. limn→∞
n
√
n = 1.

5. If limn→∞ an = 0, then limn→∞ sin(an) = 0.

6. If limn→∞ an = 0, then limn→∞
sin(an)
an

= 1.

14. Definition. We say the sequence {an} diverges to ∞ if and only if for every
M > 0, there is a positive integer n∗ such that for all n ≥ n∗ we have an > M. In
this case we write

lim
n→∞

an =∞.

15. Definition. We say the sequence {an} diverges to −∞ if and only if for every
M < 0, there is a positive integer n∗ such that for all n ≥ n∗ we have an < M. In
this case we write

lim
n→∞

an = −∞.



16. Theorem. If limn→∞ an =∞ and there exists a positive integer K such that
bn ≥ an for all n ≥ K, then limn→∞ bn =∞.

17. Theorem. If limn→∞ an = −∞ and there exists a positive integer K such
that bn ≤ an for all n ≥ K, then limn→∞ bn = −∞.

18. Theorem. Suppose that limn→∞ an =∞.

1. If {bn} is bounded below, then limn→∞(an + bn) =∞.

2. If {bn} converges or diverges to ∞, then limn→∞(an + bn) =∞.

3. If {bn} is bounded below by a positive number, then limn→∞(an · bn) =∞.

4. If {bn} converges to a positive number or diverges to ∞, then

lim
n→∞

(an · bn) =∞.

5. If {bn} converges to a negative number or diverges to −∞, then

lim
n→∞

(an · bn) = −∞.

19. Theorem.

1. If limn→∞ an =∞, then limn→∞
1
an

= 0.

2. If limn→∞
1
an

= 0 and an > 0 for all n sufficiently large, then

lim
n→∞

an =∞.

3. If limn→∞
1
an

= 0 and an < 0 for all n sufficiently large, then

lim
n→∞

an = −∞.

20. Theorem. (Ratio Test) Suppose that {an} is a sequence of nonzero real
numbers such that

lim
n→∞

|an+1

an
| = α

where either α ∈ R or α =∞.

1. If α < 1, then limn→∞ an = 0.

2. If α > 1, then limn→∞ |an| =∞, so the sequence {an} diverges.

21. Definition. We say that a sequence {an} oscillates if and only if none of the
three statements below hold.

1. limn→∞ an = L for some L ∈ R.



2. limn→∞ an =∞.

3. limn→∞ an = −∞.

22. Definition. We say that a sequence {an} is increasing if and only if n < k
implies an ≤ ak.

23. Remark. A sequence {an} is increasing if and only if for all n we have
an ≤ an+1.

24. Remark. A sequence {an} of positive real numbers is increasing if and only
if for all n we have an+1

an
≥ 1.

25. Definition. We say that a sequence {an} is eventually increasing if and only
if there is a positive integer n∗ such that n∗ ≤ n < k implies an ≤ ak.

26. Definition. We say that a sequence {an} is decreasing if and only if n < k
implies an ≥ ak.

27. Remark. A sequence {an} is decreasing if and only if for all n we have
an ≥ an+1.

28. Remark. A sequence {an} of positive real numbers is decreasing if and only
if for all n we have an+1

an
≤ 1.

29. Definition. We say that a sequence {an} is eventually decreasing if and only
if there is a positive integer n∗ such that n∗ ≤ n < k implies an ≥ ak.

30. Theorem. A bounded, increasing sequence converges. An unbounded, in-
creasing sequence diverges to ∞.

31. Theorem. A bounded, decreasing sequence converges. An unbounded, de-
creasing sequence diverges to −∞.

32. Definition. We say that a sequence {an} is monotone if and only if either
{an} is increasing or {an} is decreasing.

33. Definition. Let ε > 0, and let s ∈ R. The ε-neighborhood of s is

Nε(s) = {x ∈ R : |x− s| < ε} = (s− ε, s+ ε).

The deleted ε-neighborhood of s is

N−ε (s) = {x ∈ R : 0 < |x− s| < ε} = (s− ε, s) ∪ (s, s+ ε).

34. Definition. Let S ⊆ R, and let w ∈ R. We say that w is an accumulation
point of S if and only if every deleted neighborhood of w contains at least one point
of S.



35. Theorem. Let S ⊆ R, and let w ∈ R. Then w is an accumulation point of S
if and only if every neighborhood of w contains infinitely many points of S.

36. Theorem. (Bolzano-Weierstrass Theorem for sets) Every bounded infinite
subset of R has at least one accumulation point.

37. Definition. We say that a sequence {an} is a Cauchy sequence if and only
if for every ε > 0, there exists a positive integer n∗ such that for all k, j ≥ n∗ we
have |ak − aj | < ε.

38. Theorem. Let {an} be a sequence of real numbers. Then {an} is a Cauchy
sequence if and only if {an} converges.

39. Definition. The sequence {bn}∞n=i is a subsequence of the sequence {an}∞n=j
if and only if there exists a strictly increasing function

f : {x ∈ N : x ≥ i} → {x ∈ N : x ≥ j}

such that bn = af(n) for all n ∈ N with n ≥ i.
We sometimes use the notation bk = ank

for a subsequence. In this case, nk
must be a strictly increasing function of k.

40. Theorem. (Bolzano-Weierstrass Theorem for sequences) Every bounded
sequence in R has at least one convergent subsequence.

41. Definition. We let E denote the set of extended real numbers defined by

E = R ∪ {∞} ∪ {−∞}.

42. Definition. Let {an} be a sequence of real numbers, and let A ∈ E. We say
that A is a subsequential limit point of the sequence {an} if and only if there is a
subsequence ank

of {an} such that

lim
k→∞

ank
= A.

43. Theorem. Let {an} be a sequence of real numbers. There exists a largest
subsequential limit point of the sequence and a smallest subsequential limit point
of the sequence.

44. Definition. Let {an} be a sequence of real numbers. The largest subse-
quential limit point of the sequence is denoted by lim supn→∞ an. The smallest
subsequential limit point of the sequence is denoted by lim infn→∞ an.

45. Theorem. Let {an} be a sequence of real numbers, and let A ∈ E. Then
limn→∞ an = A if and only if A = lim supn→∞ an = lim infn→∞ an.


