Advanced Calculus I, Dr. Block, Chapter 2 notes

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n^* greater than x.

2. Definition. A sequence is a real-valued function whose domain consists of all integers which are greater than or equal to some fixed integer (which is often 1). The notation $\{a_n\}$ is used.

3. Definition. We say that a sequence $\{a_n\}$ converges to a real number L if and only if for every $\epsilon > 0$, there exists a positive integer n^* such that for all $n \ge n^*$ we have $|a_n - L| < \epsilon$. The real number L is called the limit of the sequence and we write

$$\lim_{n \to \infty} a_n = L$$

We also say that the sequence is convergent.

If there is no real number L as above, we say that the sequence diverges or is divergent.

4. Problem. Prove using the definition that $\lim_{n\to\infty} \frac{1}{n} = 0$.

Formal Proof. Let $\epsilon > 0$. By the Archimedean Property there exists a positive integer $n^* > \frac{1}{\epsilon}$. If $n \ge n^*$ we have

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{n^*} < \epsilon.$$

5. Problem. Prove using the definition that $\lim_{n\to\infty} \frac{5n}{n^2+1} = 0$.

Preliminary consideration: We want $\left|\frac{5n}{n^2+1}-0\right| < \epsilon$ for $n \ge n^*$. We see that

$$\left|\frac{5n}{n^2+1} - 0\right| = \frac{5n}{n^2+1} \le \frac{5n}{n^2} = \frac{5}{n}$$

Also we will have $\frac{5}{n} < \epsilon$ if $n > \frac{5}{\epsilon}$.

Formal Proof. Let $\epsilon > 0$. By the Archimedean Property there exists a positive integer $n^* > \frac{5}{\epsilon}$. If $n \ge n^*$ we have

$$\left|\frac{5n}{n^2+1} - 0\right| = \frac{5n}{n^2+1} \le \frac{5n}{n^2} = \frac{5}{n} \le \frac{5}{n^*} < \epsilon.$$

6. Note. A sequence $\{a_n\}$ diverges if and only if for every real number L there exists $\epsilon > 0$ such that for every positive integer n^* there exists $n \ge n^*$ with $|a_n - L| \ge \epsilon$.

7. Theorem. Any two limits of a convergent sequence are the same. (If a sequence converges, then the limit of the sequence is unique.)

8. Definition. We say that a sequence $\{a_n\}$ is bounded if and only if there is a real number B such that $|a_n| \leq B$ for all n.

9. Theorem. Any convergent sequence is bounded.

10. Theorem. If $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$ with $A, B \in \mathbb{R}$, then

- 1. $\lim_{n \to \infty} a_n + b_n = A + B.$
- 2. $\lim_{n \to \infty} a_n b_n = A B.$
- 3. $\lim_{n \to \infty} a_n \cdot b_n = A \cdot B$.
- 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, if $B \neq 0$.

5. $\lim_{n\to\infty} (a_n)^p = A^p$, for any positive rational number p, provided that the "roots" are defined.

11. Theorem. (Squeeze Theorem) Suppose that $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are sequences, and suppose that there exists a positive integer K such that if $n \ge K$, then $a_n \le b_n \le c_n$. Suppose that for some real number L

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$$

Then $\lim_{n\to\infty} b_n = L$.

12. Theorem. If a sequence $\{a_n\}$ converges to 0 and a sequence $\{b_n\}$ is bounded, then the sequence $\{a_n \cdot b_n\}$ converges to 0.

- 13. Theorem. (Special limits to remember and use.)
- 1. If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
- 2. If |r| < 1, then $\lim_{n \to \infty} r^n = 0$.
- 3. If c > 0, then $\lim_{n \to \infty} \sqrt[n]{c} = 1$.
- 4. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- 5. If $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} \sin(a_n) = 0$.
- 6. If $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} \frac{\sin(a_n)}{a_n} = 1$.

14. Definition. We say the sequence $\{a_n\}$ diverges to ∞ if and only if for every M > 0, there is a positive integer n^* such that for all $n \ge n^*$ we have $a_n > M$. In this case we write

$$\lim_{n \to \infty} a_n = \infty$$

15. Definition. We say the sequence $\{a_n\}$ diverges to $-\infty$ if and only if for every M < 0, there is a positive integer n^* such that for all $n \ge n^*$ we have $a_n < M$. In this case we write

$$\lim_{n \to \infty} a_n = -\infty$$

16. Theorem. If $\lim_{n\to\infty} a_n = \infty$ and there exists a positive integer K such that $b_n \ge a_n$ for all $n \ge K$, then $\lim_{n\to\infty} b_n = \infty$.

17. Theorem. If $\lim_{n\to\infty} a_n = -\infty$ and there exists a positive integer K such that $b_n \leq a_n$ for all $n \geq K$, then $\lim_{n\to\infty} b_n = -\infty$.

- 18. Theorem. Suppose that $\lim_{n\to\infty} a_n = \infty$.
- 1. If $\{b_n\}$ is bounded below, then $\lim_{n\to\infty} (a_n + b_n) = \infty$.
- 2. If $\{b_n\}$ converges or diverges to ∞ , then $\lim_{n\to\infty}(a_n+b_n)=\infty$.
- 3. If $\{b_n\}$ is bounded below by a positive number, then $\lim_{n\to\infty} (a_n \cdot b_n) = \infty$.
- 4. If $\{b_n\}$ converges to a positive number or diverges to ∞ , then

$$\lim_{n \to \infty} (a_n \cdot b_n) = \infty.$$

5. If $\{b_n\}$ converges to a negative number or diverges to $-\infty$, then

$$\lim_{n \to \infty} (a_n \cdot b_n) = -\infty$$

19. Theorem.

- 1. If $\lim_{n\to\infty} a_n = \infty$, then $\lim_{n\to\infty} \frac{1}{a_n} = 0$.
- 2. If $\lim_{n\to\infty} \frac{1}{a_n} = 0$ and $a_n > 0$ for all *n* sufficiently large, then

$$\lim_{n \to \infty} a_n = \infty$$

3. If $\lim_{n\to\infty} \frac{1}{a_n} = 0$ and $a_n < 0$ for all *n* sufficiently large, then

$$\lim_{n \to \infty} a_n = -\infty.$$

20. Theorem. (Ratio Test) Suppose that $\{a_n\}$ is a sequence of nonzero real numbers such that

$$\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \alpha$$

where either $\alpha \in \mathbb{R}$ or $\alpha = \infty$.

- 1. If $\alpha < 1$, then $\lim_{n \to \infty} a_n = 0$.
- 2. If $\alpha > 1$, then $\lim_{n \to \infty} |a_n| = \infty$, so the sequence $\{a_n\}$ diverges.

21. Definition. We say that a sequence $\{a_n\}$ oscillates if and only if none of the three statements below hold.

1. $\lim_{n\to\infty} a_n = L$ for some $L \in \mathbb{R}$.

2. $\lim_{n\to\infty} a_n = \infty$.

3. $\lim_{n\to\infty} a_n = -\infty$.

22. Definition. We say that a sequence $\{a_n\}$ is increasing if and only if n < k implies $a_n \leq a_k$.

23. Remark. A sequence $\{a_n\}$ is increasing if and only if for all n we have $a_n \leq a_{n+1}$.

24. Remark. A sequence $\{a_n\}$ of positive real numbers is increasing if and only if for all n we have $\frac{a_{n+1}}{a_n} \ge 1$.

25. Definition. We say that a sequence $\{a_n\}$ is eventually increasing if and only if there is a positive integer n^* such that $n^* \leq n < k$ implies $a_n \leq a_k$.

26. Definition. We say that a sequence $\{a_n\}$ is decreasing if and only if n < k implies $a_n \ge a_k$.

27. Remark. A sequence $\{a_n\}$ is decreasing if and only if for all n we have $a_n \geq a_{n+1}$.

28. Remark. A sequence $\{a_n\}$ of positive real numbers is decreasing if and only if for all n we have $\frac{a_{n+1}}{a_n} \leq 1$.

29. Definition. We say that a sequence $\{a_n\}$ is eventually decreasing if and only if there is a positive integer n^* such that $n^* \leq n < k$ implies $a_n \geq a_k$.

30. Theorem. A bounded, increasing sequence converges. An unbounded, increasing sequence diverges to ∞ .

31. Theorem. A bounded, decreasing sequence converges. An unbounded, decreasing sequence diverges to $-\infty$.

32. Definition. We say that a sequence $\{a_n\}$ is monotone if and only if either $\{a_n\}$ is increasing or $\{a_n\}$ is decreasing.

33. Definition. Let $\epsilon > 0$, and let $s \in \mathbb{R}$. The ϵ -neighborhood of s is

$$N_{\epsilon}(s) = \{x \in \mathbb{R} : |x - s| < \epsilon\} = (s - \epsilon, s + \epsilon).$$

The deleted ϵ -neighborhood of s is

 $N_{\epsilon}^{-}(s) = \{x \in \mathbb{R} : 0 < |x - s| < \epsilon\} = (s - \epsilon, s) \cup (s, s + \epsilon).$

34. Definition. Let $S \subseteq \mathbb{R}$, and let $w \in \mathbb{R}$. We say that w is an accumulation point of S if and only if every deleted neighborhood of w contains at least one point of S.

35. Theorem. Let $S \subseteq \mathbb{R}$, and let $w \in \mathbb{R}$. Then w is an accumulation point of S if and only if every neighborhood of w contains infinitely many points of S.

36. Theorem. (Bolzano-Weierstrass Theorem for sets) Every bounded infinite subset of \mathbb{R} has at least one accumulation point.

37. Definition. We say that a sequence $\{a_n\}$ is a Cauchy sequence if and only if for every $\epsilon > 0$, there exists a positive integer n^* such that for all $k, j \ge n^*$ we have $|a_k - a_j| < \epsilon$.

38. Theorem. Let $\{a_n\}$ be a sequence of real numbers. Then $\{a_n\}$ is a Cauchy sequence if and only if $\{a_n\}$ converges.

39. Definition. The sequence $\{b_n\}_{n=i}^{\infty}$ is a subsequence of the sequence $\{a_n\}_{n=j}^{\infty}$ if and only if there exists a strictly increasing function

$$f: \{x \in \mathbb{N} : x \ge i\} \to \{x \in \mathbb{N} : x \ge j\}$$

such that $b_n = a_{f(n)}$ for all $n \in \mathbb{N}$ with $n \ge i$.

We sometimes use the notation $b_k = a_{n_k}$ for a subsequence. In this case, n_k must be a strictly increasing function of k.

40. Theorem. (Bolzano-Weierstrass Theorem for sequences) Every bounded sequence in \mathbb{R} has at least one convergent subsequence.

41. Definition. We let \mathbb{E} denote the set of extended real numbers defined by

$$\mathbb{E} = \mathbb{R} \cup \{\infty\} \cup \{-\infty\}.$$

42. Definition. Let $\{a_n\}$ be a sequence of real numbers, and let $A \in \mathbb{E}$. We say that A is a subsequential limit point of the sequence $\{a_n\}$ if and only if there is a subsequence a_{n_k} of $\{a_n\}$ such that

$$\lim_{k \to \infty} a_{n_k} = A.$$

43. Theorem. Let $\{a_n\}$ be a sequence of real numbers. There exists a largest subsequential limit point of the sequence and a smallest subsequential limit point of the sequence.

44. Definition. Let $\{a_n\}$ be a sequence of real numbers. The largest subsequential limit point of the sequence is denoted by $\limsup_{n\to\infty} a_n$. The smallest subsequential limit point of the sequence is denoted by $\liminf_{n\to\infty} a_n$.

45. Theorem. Let $\{a_n\}$ be a sequence of real numbers, and let $A \in \mathbb{E}$. Then $\lim_{n\to\infty} a_n = A$ if and only if $A = \limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n$.