Advanced Calculus I, Dr. Block, Chapter 2 notes

1. Theorem. (Archimedean Property) Let x be any real number. There exists a positive integer n^{*} greater than x.
2. Definition. A sequence is a real-valued function whose domain consists of all integers which are greater than or equal to some fixed integer (which is often 1). The notation $\left\{a_{n}\right\}$ is used.
3. Definition. We say that a sequence $\left\{a_{n}\right\}$ converges to a real number L if and only if for every $\epsilon>0$, there exists a positive integer n^{*} such that for all $n \geq n^{*}$ we have $\left|a_{n}-L\right|<\epsilon$. The real number L is called the limit of the sequence and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

We also say that the sequence is convergent.
If there is no real number L as above, we say that the sequence diverges or is divergent.
4. Problem. Prove using the definition that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Formal Proof. Let $\epsilon>0$. By the Archimedean Property there exists a positive integer $n^{*}>\frac{1}{\epsilon}$. If $n \geq n^{*}$ we have

$$
\left|\frac{1}{n}-0\right|=\frac{1}{n} \leq \frac{1}{n^{*}}<\epsilon
$$

5. Problem. Prove using the definition that $\lim _{n \rightarrow \infty} \frac{5 n}{n^{2}+1}=0$.

Preliminary consideration: We want $\left|\frac{5 n}{n^{2}+1}-0\right|<\epsilon$ for $n \geq n^{*}$. We see that

$$
\left|\frac{5 n}{n^{2}+1}-0\right|=\frac{5 n}{n^{2}+1} \leq \frac{5 n}{n^{2}}=\frac{5}{n}
$$

Also we will have $\frac{5}{n}<\epsilon$ if $n>\frac{5}{\epsilon}$.
Formal Proof. Let $\epsilon>0$. By the Archimedean Property there exists a positive integer $n^{*}>\frac{5}{\epsilon}$. If $n \geq n^{*}$ we have

$$
\left|\frac{5 n}{n^{2}+1}-0\right|=\frac{5 n}{n^{2}+1} \leq \frac{5 n}{n^{2}}=\frac{5}{n} \leq \frac{5}{n^{*}}<\epsilon
$$

6. Note. A sequence $\left\{a_{n}\right\}$ diverges if and only if for every real number L there exists $\epsilon>0$ such that for every positive integer n^{*} there exists $n \geq n^{*}$ with $\left|a_{n}-L\right| \geq \epsilon$.
7. Theorem. Any two limits of a convergent sequence are the same. (If a sequence converges, then the limit of the sequence is unique.)
8. Definition. We say that a sequence $\left\{a_{n}\right\}$ is bounded if and only if there is a real number B such that $\left|a_{n}\right| \leq B$ for all n.
9. Theorem. Any convergent sequence is bounded.
10. Theorem. If $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$ with $A, B \in \mathbb{R}$, then
11. $\lim _{n \rightarrow \infty} a_{n}+b_{n}=A+B$.
12. $\lim _{n \rightarrow \infty} a_{n}-b_{n}=A-B$.
13. $\lim _{n \rightarrow \infty} a_{n} \cdot b_{n}=A \cdot B$.
14. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B}$, if $B \neq 0$.
15. $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{p}=A^{p}$, for any positive rational number p, provided that the "roots" are defined.
16. Theorem. (Squeeze Theorem) Suppose that $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ are sequences, and suppose that there exists a positive integer K such that if $n \geq K$, then $a_{n} \leq b_{n} \leq c_{n}$. Suppose that for some real number L

$$
\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} c_{n}
$$

Then $\lim _{n \rightarrow \infty} b_{n}=L$.
12. Theorem. If a sequence $\left\{a_{n}\right\}$ converges to 0 and a sequence $\left\{b_{n}\right\}$ is bounded, then the sequence $\left\{a_{n} \cdot b_{n}\right\}$ converges to 0 .
13. Theorem. (Special limits to remember and use.)

1. If $p>0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$.
2. If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$.
3. If $c>0$, then $\lim _{n \rightarrow \infty} \sqrt[n]{c}=1$.
4. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
5. If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} \sin \left(a_{n}\right)=0$.
6. If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} \frac{\sin \left(a_{n}\right)}{a_{n}}=1$.
7. Definition. We say the sequence $\left\{a_{n}\right\}$ diverges to ∞ if and only if for every $M>0$, there is a positive integer n^{*} such that for all $n \geq n^{*}$ we have $a_{n}>M$. In this case we write

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

15. Definition. We say the sequence $\left\{a_{n}\right\}$ diverges to $-\infty$ if and only if for every $M<0$, there is a positive integer n^{*} such that for all $n \geq n^{*}$ we have $a_{n}<M$. In this case we write

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty
$$

16. Theorem. If $\lim _{n \rightarrow \infty} a_{n}=\infty$ and there exists a positive integer K such that $b_{n} \geq a_{n}$ for all $n \geq K$, then $\lim _{n \rightarrow \infty} b_{n}=\infty$.
17. Theorem. If $\lim _{n \rightarrow \infty} a_{n}=-\infty$ and there exists a positive integer K such that $b_{n} \leq a_{n}$ for all $n \geq K$, then $\lim _{n \rightarrow \infty} b_{n}=-\infty$.
18. Theorem. Suppose that $\lim _{n \rightarrow \infty} a_{n}=\infty$.
19. If $\left\{b_{n}\right\}$ is bounded below, then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty$.
20. If $\left\{b_{n}\right\}$ converges or diverges to ∞, then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty$.
21. If $\left\{b_{n}\right\}$ is bounded below by a positive number, then $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\infty$.
22. If $\left\{b_{n}\right\}$ converges to a positive number or diverges to ∞, then

$$
\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\infty
$$

5. If $\left\{b_{n}\right\}$ converges to a negative number or diverges to $-\infty$, then

$$
\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=-\infty
$$

19. Theorem.
20. If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$.
21. If $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$ and $a_{n}>0$ for all n sufficiently large, then

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

3. If $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$ and $a_{n}<0$ for all n sufficiently large, then

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty
$$

20. Theorem. (Ratio Test) Suppose that $\left\{a_{n}\right\}$ is a sequence of nonzero real numbers such that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\alpha
$$

where either $\alpha \in \mathbb{R}$ or $\alpha=\infty$.

1. If $\alpha<1$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
2. If $\alpha>1$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$, so the sequence $\left\{a_{n}\right\}$ diverges.
3. Definition. We say that a sequence $\left\{a_{n}\right\}$ oscillates if and only if none of the three statements below hold.
4. $\lim _{n \rightarrow \infty} a_{n}=L$ for some $L \in \mathbb{R}$.
5. $\lim _{n \rightarrow \infty} a_{n}=\infty$.
6. $\lim _{n \rightarrow \infty} a_{n}=-\infty$.
7. Definition. We say that a sequence $\left\{a_{n}\right\}$ is increasing if and only if $n<k$ implies $a_{n} \leq a_{k}$.
8. Remark. A sequence $\left\{a_{n}\right\}$ is increasing if and only if for all n we have $a_{n} \leq a_{n+1}$.
9. Remark. A sequence $\left\{a_{n}\right\}$ of positive real numbers is increasing if and only if for all n we have $\frac{a_{n+1}}{a_{n}} \geq 1$.
10. Definition. We say that a sequence $\left\{a_{n}\right\}$ is eventually increasing if and only if there is a positive integer n^{*} such that $n^{*} \leq n<k$ implies $a_{n} \leq a_{k}$.
11. Definition. We say that a sequence $\left\{a_{n}\right\}$ is decreasing if and only if $n<k$ implies $a_{n} \geq a_{k}$.
12. Remark. A sequence $\left\{a_{n}\right\}$ is decreasing if and only if for all n we have $a_{n} \geq a_{n+1}$.
13. Remark. A sequence $\left\{a_{n}\right\}$ of positive real numbers is decreasing if and only if for all n we have $\frac{a_{n+1}}{a_{n}} \leq 1$.
14. Definition. We say that a sequence $\left\{a_{n}\right\}$ is eventually decreasing if and only if there is a positive integer n^{*} such that $n^{*} \leq n<k$ implies $a_{n} \geq a_{k}$.
15. Theorem. A bounded, increasing sequence converges. An unbounded, increasing sequence diverges to ∞.
16. Theorem. A bounded, decreasing sequence converges. An unbounded, decreasing sequence diverges to $-\infty$.
17. Definition. We say that a sequence $\left\{a_{n}\right\}$ is monotone if and only if either $\left\{a_{n}\right\}$ is increasing or $\left\{a_{n}\right\}$ is decreasing.
18. Definition. Let $\epsilon>0$, and let $s \in \mathbb{R}$. The ϵ-neighborhood of s is

$$
N_{\epsilon}(s)=\{x \in \mathbb{R}:|x-s|<\epsilon\}=(s-\epsilon, s+\epsilon) .
$$

The deleted ϵ-neighborhood of s is

$$
N_{\epsilon}^{-}(s)=\{x \in \mathbb{R}: 0<|x-s|<\epsilon\}=(s-\epsilon, s) \cup(s, s+\epsilon) .
$$

34. Definition. Let $S \subseteq \mathbb{R}$, and let $w \in \mathbb{R}$. We say that w is an accumulation point of S if and only if every deleted neighborhood of w contains at least one point of S.
35. Theorem. Let $S \subseteq \mathbb{R}$, and let $w \in \mathbb{R}$. Then w is an accumulation point of S if and only if every neighborhood of w contains infinitely many points of S.
36. Theorem. (Bolzano-Weierstrass Theorem for sets) Every bounded infinite subset of \mathbb{R} has at least one accumulation point.
37. Definition. We say that a sequence $\left\{a_{n}\right\}$ is a Cauchy sequence if and only if for every $\epsilon>0$, there exists a positive integer n^{*} such that for all $k, j \geq n^{*}$ we have $\left|a_{k}-a_{j}\right|<\epsilon$.
38. Theorem. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Then $\left\{a_{n}\right\}$ is a Cauchy sequence if and only if $\left\{a_{n}\right\}$ converges.
39. Definition. The sequence $\left\{b_{n}\right\}_{n=i}^{\infty}$ is a subsequence of the sequence $\left\{a_{n}\right\}_{n=j}^{\infty}$ if and only if there exists a strictly increasing function

$$
f:\{x \in \mathbb{N}: x \geq i\} \rightarrow\{x \in \mathbb{N}: x \geq j\}
$$

such that $b_{n}=a_{f(n)}$ for all $n \in \mathbb{N}$ with $n \geq i$.
We sometimes use the notation $b_{k}=a_{n_{k}}$ for a subsequence. In this case, n_{k} must be a strictly increasing function of k.
40. Theorem. (Bolzano-Weierstrass Theorem for sequences) Every bounded sequence in \mathbb{R} has at least one convergent subsequence.
41. Definition. We let \mathbb{E} denote the set of extended real numbers defined by

$$
\mathbb{E}=\mathbb{R} \cup\{\infty\} \cup\{-\infty\}
$$

42. Definition. Let $\left\{a_{n}\right\}$ be a sequence of real numbers, and let $A \in \mathbb{E}$. We say that A is a subsequential limit point of the sequence $\left\{a_{n}\right\}$ if and only if there is a subsequence $a_{n_{k}}$ of $\left\{a_{n}\right\}$ such that

$$
\lim _{k \rightarrow \infty} a_{n_{k}}=A
$$

43. Theorem. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. There exists a largest subsequential limit point of the sequence and a smallest subsequential limit point of the sequence.
44. Definition. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. The largest subsequential limit point of the sequence is denoted by $\lim \sup _{n \rightarrow \infty} a_{n}$. The smallest subsequential limit point of the sequence is denoted by $\liminf _{n \rightarrow \infty} a_{n}$.
45. Theorem. Let $\left\{a_{n}\right\}$ be a sequence of real numbers, and let $A \in \mathbb{E}$. Then $\lim _{n \rightarrow \infty} a_{n}=A$ if and only if $A=\limsup \operatorname{sum}_{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}$.
