ADVANCED CALCULUS I, DR. BLOCK, SAMPLE EXAM 2 (WITH SOLUTIONS), FALL 2019

There are seven problems worth a total of 50 points.

1. (10 points) Prove that the following sequence $\left\{a_{n}\right\}$ converges to 0 using only the definition (without using any theorems). Show your scratch work and the formal proof.

$$
a_{n}=\frac{n+9}{n^{2}+5}
$$

Solution:
Preliminary consideration: We want $\left|a_{n}-0\right|<\epsilon$ for all $n \geq n^{*}$. We see that

$$
\frac{n+9}{n^{2}+5} \leq \frac{n+9}{n^{2}} \leq \frac{10 n}{n^{2}}=\frac{10}{n}
$$

So it suffices to have $\frac{10}{n}<\epsilon$. This will be the case if and only if $n>\frac{10}{\epsilon}$.
Formal proof: Let $\epsilon>0$. There exists a positive integer n^{*} which is greater than $\frac{10}{\epsilon}$. If $n \geq n^{*}$, then

$$
\left|a_{n}-0\right|=\frac{n+9}{n^{2}+5} \leq \frac{10}{n}<\epsilon
$$

2. (10 points) Consider two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, where the sequence $\left\{a_{n}\right\}$ diverges to infinity and the sequence $\left\{a_{n} b_{n}\right\}$ converges. Prove that the sequence $\left\{b_{n}\right\}$ must converge to zero.

Solution:
Since the sequence $\left\{a_{n}\right\}$ diverges to infinity, it follows that the sequence $\left\{\frac{1}{a_{n}}\right\}$ converges to zero. Now, $b_{n}=\left(\frac{1}{a_{n}}\right)\left(a_{n} b_{n}\right)$ and the sequence $\left\{a_{n} b_{n}\right\}$ converges to some real number L. So,

$$
\lim _{n \rightarrow \infty} b_{n}=0 \cdot L=0
$$

3. (9 points) Determine whether the given sequence converges, diverges to ∞, diverges to $-\infty$, or oscillates. If the sequence converges, find the limit. Justify your answer, using appropriate theorems.

$$
a_{n}=\frac{(-2)^{n}}{n^{3}}
$$

Solution:
We apply the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{2^{n+1} \cdot n^{3}}{2^{n} \cdot(n+1)^{3}}=2>1
$$

It follows from the ratio test that $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$. Since a_{n} alternates between positive and negative, the sequence oscillates.
4. (9 points) Determine whether the given sequence converges, diverges to ∞, diverges to $-\infty$, or oscillates. If the sequence converges, find the limit. Justify your answer, using appropriate theorems.

$$
a_{n}=\frac{(\sin n)\left(\sqrt[n]{5 n^{4}}\right)}{n}
$$

Solution:
Since the sequence $\{\sin n\}$ is bounded and the sequence $\left\{\frac{1}{n}\right\}$ converges to zero, we have

$$
\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0
$$

Also,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{5 n^{4}}=\lim _{n \rightarrow \infty} \sqrt[n]{5} \cdot(\sqrt[n]{n})^{4}=1
$$

It follows that

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

5. (3 points) Determine if the statement is true or false. If $\left\{a_{n}\right\}$ is the sequence given by $a_{n}=\sin \frac{n \pi}{4}$, and $\left\{b_{n}\right\}$ is the sequence given by $b_{n}=\frac{\sqrt{2}}{2}$, then $\left\{b_{n}\right\}$ is a subsequence of $\left\{a_{n}\right\}$.

Answer: True
6. (3 points) Determine if the statement is true or false. If $\left\{a_{n}\right\}$ is the sequence given by $a_{n}=(-1)^{n} \frac{2 n+3}{n+7}$, then $\lim \inf _{n \rightarrow \infty} a_{n}=-2$.

Answer: True
7. (3 points) Determine if the statement is true or false. If S is the range of the sequence $\left\{a_{n}\right\}$ given by $a_{n}=\sin \frac{n \pi}{2}$, then 0 is an accumulation point of S.

Answer: False
8. (3 points) Determine if the statement is true or false. If S is the set of all rational numbers, then every real number is an accumulation point of S.

Answer: True

