ADVANCED CALCULUS I, DR. BLOCK, SAMPLE EXAM 2, FALL 2019

There are seven problems worth a total of 50 points.

1. (10 points) Prove that the following sequence $\left\{a_{n}\right\}$ converges to 0 using only the definition (without using any theorems). Show your scratch work and the formal proof.

$$
a_{n}=\frac{n+9}{n^{2}+5}
$$

2. (10 points) Consider two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, where the sequence $\left\{a_{n}\right\}$ diverges to infinity and the sequence $\left\{a_{n} b_{n}\right\}$ converges. Prove that the sequence $\left\{b_{n}\right\}$ must converge to zero.
3. (9 points) Determine whether the given sequence converges, diverges to ∞, diverges to $-\infty$, or oscillates. If the sequence converges, find the limit. Justify your answer, using appropriate theorems.

$$
a_{n}=\frac{(-2)^{n}}{n^{3}}
$$

4. (9 points) Determine whether the given sequence converges, diverges to ∞, diverges to $-\infty$, or oscillates. If the sequence converges, find the limit. Justify your answer, using appropriate theorems.

$$
a_{n}=\frac{(\sin n)\left(\sqrt[n]{5 n^{4}}\right)}{n}
$$

5. (3 points) Determine if the statement is true or false. If $\left\{a_{n}\right\}$ is the sequence given by $a_{n}=\sin \frac{n \pi}{4}$, and $\left\{b_{n}\right\}$ is the sequence given by $b_{n}=\frac{\sqrt{2}}{2}$, then $\left\{b_{n}\right\}$ is a subsequence of $\left\{a_{n}\right\}$.
6. (3 points) Determine if the statement is true or false. If $\left\{a_{n}\right\}$ is the sequence given by $a_{n}=(-1)^{n} \frac{2 n+3}{n+7}$, then $\lim \inf _{n \rightarrow \infty} a_{n}=-2$.
7. (3 points) Determine if the statement is true or false. If S is the range of the sequence $\left\{a_{n}\right\}$ given by $a_{n}=\sin \frac{n \pi}{2}$, then 0 is an accumulation point of S.
8. (3 points) Determine if the statement is true or false. If S is the set of all rational numbers, then every real number is an accumulation point of S.
