ADVANCED CALCULUS I, DR. BLOCK, SAMPLE EXAM 3 WITH ANSWERS, FALL 2019

1. (4 points) Complete the following definition: Suppose that $f: D \to \mathbb{R}$, where D is a subset of \mathbb{R} . Suppose that $L \in \mathbb{R}$ and a is an accumulation point of $D \cap (a, \infty)$. We say that $\lim_{x \to a^+} f(x) = L$ if and only if

Answer: for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ for all $x \in D$ with $x \in (N_{\delta}^{-}(a) \cap (a, \infty))$.

2. (4 points) Complete the following definition: Suppose that $f: D \to \mathbb{R}$, where D is a subset of \mathbb{R} . Suppose that a is an accumulation point of D. We say that $\lim_{x\to a} f(x) = -\infty$ if and only if

Answer: for every B < 0 there exists $\delta > 0$ such that f(x) < B for all $x \in D$ with $x \in N_{\delta}^{-}(a)$.

3. (10 points) Evaluate the given limit. Show your work and justify your answer.

$$\lim_{x \to 0^+} \left[\left(\exp\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \right] \right]$$

Answer:

$$\lim_{x \to 0^+} \exp(\frac{1}{x}) = \lim_{t \to \infty} e^t = \infty.$$

Also, the function $\sin(\frac{1}{x})$ is bounded below. Thus,

$$\lim_{x \to 0^+} \left[\left(\exp\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \right] = \infty.$$

4. (10 points) Evaluate the given limit. Show your work and justify your answer.

$$\lim_{x \to 0^-} x \sqrt{\frac{7}{x^2} - 5}$$

Answer: Using the fact that for all x < 0, $x = -\sqrt{x^2}$, we have

$$\lim_{x \to 0^{-}} x \sqrt{\frac{7}{x^{2}} - 5} = \lim_{x \to 0^{-}} -\sqrt{7 - 5x^{2}} = -\sqrt{7}.$$

 $5.~(10~{
m points})$ Locate and classify all of the points of discontinuity. Justify your answer.

$$f(x) = \begin{cases} x \text{ if } x = \pm \frac{1}{n}, \ n \in \mathbb{N} \\ x^2 \text{ otherwise} \end{cases}$$

Recall that $\mathbb{N} = \{1, 2, 3, \dots\}$

Answer: Each real number $a = \pm \frac{1}{n}$ except for a = 1 is a point of discontinuity, and each of these discontinuities is removable. This is the case because for these values of a we have $\lim_{x\to a} f(x) = a^2$ while f(a) = a and $a \neq a^2$. There are no other discontinuities.

6. (4 points) Determine if the statement is true or false.

If D is a finite subset of \mathbb{R} , then every function $f:D\to\mathbb{R}$ is continuous.

Answer: True.

7. (4 points) Determine if the statement is true or false.

The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{\sin(\sin x)}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is continuous.

Answer: False.

8. (4 points) Determine if the statement is true or false.

If $f: \mathbb{R} \to \mathbb{R}$ and the sequence $\{f(n)\}, n \in \mathbb{N}$ converges to a real number L, then $\lim_{x \to \infty} f(x) = L$.

Answer: False.