
Advanced Calculus, Dr. Block, Quiz 3 (with solutions), Fall
2019

1. (4 points) Consider the sequences {an} and {bn}, where the sequence
{an} converges to zero. Is it true that the sequence {an · bn} must
converge to zero. Explain.

Solution: It is not true that the sequence {an ·bn} must converge to
zero. For example, if an = 1

n and bn = n2, then the sequence {an · bn}
diverges to ∞.

2. (3 points) Determine if the given limit exists, and evaluate the limit
if the limit exists. Justify your answer.

lim
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Solution: We have
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It follows from one of the special limits in the Chapter 3 notes (item
13, part 6), that
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3. (3 points) Determine whether the given sequence {an} converges,
diverges to ∞, diverges to −∞, or oscillates. Find the limit if the
sequence converges. Justify your answer.

an =
bn

n!
,

where b is a positive constant.

Solution: We use the Ratio Test. We have

lim
n→∞
|an+1
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= lim
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= 0 < 1.



It follows from the Ratio Test that the sequence {an} converges to
zero.


