Advanced Calculus, Dr. Block, Quiz 3 (with solutions), Fall 2019

1. (4 points) Consider the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, where the sequence $\left\{a_{n}\right\}$ converges to zero. Is it true that the sequence $\left\{a_{n} \cdot b_{n}\right\}$ must converge to zero. Explain.

Solution: It is not true that the sequence $\left\{a_{n} \cdot b_{n}\right\}$ must converge to zero. For example, if $a_{n}=\frac{1}{n}$ and $b_{n}=n^{2}$, then the sequence $\left\{a_{n} \cdot b_{n}\right\}$ diverges to ∞.
2. (3 points) Determine if the given limit exists, and evaluate the limit if the limit exists. Justify your answer.

$$
\lim _{n \rightarrow \infty} n \sin \frac{1}{2 n} .
$$

Solution: We have

$$
n \sin \frac{1}{2 n}=\frac{\sin \frac{1}{2 n}}{\frac{1}{n}}=\frac{1}{2} \cdot \frac{\sin \frac{1}{2 n}}{\frac{1}{2 n}} .
$$

It follows from one of the special limits in the Chapter 3 notes (item 13, part 6), that

$$
\lim _{n \rightarrow \infty} n \sin \frac{1}{2 n}=\frac{1}{2} \cdot 1=\frac{1}{2} .
$$

3. (3 points) Determine whether the given sequence $\left\{a_{n}\right\}$ converges, diverges to ∞, diverges to $-\infty$, or oscillates. Find the limit if the sequence converges. Justify your answer.

$$
a_{n}=\frac{b^{n}}{n!},
$$

where b is a positive constant.
Solution: We use the Ratio Test. We have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{b^{n+1} \cdot n!}{(n+1)!\cdot b^{n}}=\lim _{n \rightarrow \infty} \frac{b}{n+1}=0<1 .
$$

It follows from the Ratio Test that the sequence $\left\{a_{n}\right\}$ converges to zero.

