ADVANCED CALCULUS I, DR. BLOCK, SAMPLE EXAM 1, FALL 2019

There are 7 problems worth a total of 50 points.

1. (10 points) Use mathematical induction to prove the given statement.

For every positive integer n,

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

2. (8 points) Negate the statement: There exists a real number b such that $f(x) \leq b$ for all $x \in D$.
3. (10 points) Find all real values of x that satisy the given expression. Express your answer as an interval on the real line, a union of intervals, a finite set of real numbers, or the empty set. Show your work.

$$
|2 x-5| \leq|x+4|
$$

4. (10 points) Prove the following: If $|f(x)| \leq M$ for all $x \in[a, b]$, then

$$
-2 M \leq f\left(x_{1}\right)-f\left(x_{2}\right) \leq 2 M
$$

for any $x_{1}, x_{2} \in[a, b]$.
5. (4 points) Determine if the statement is true or false.

If A and B are sets, then

$$
(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)
$$

6. (4 points). Determine if the statement is true or false.

If $f: X \rightarrow Y$ and $A \subseteq X$, then

$$
f^{-1}(f(A))=A
$$

7. (4 points). Determine if the statement is true or false.

If $S \subseteq \mathbb{R}$ and k is the supremum of S, then $k \in S$.

