ADVANCED CALCULUS I, DR. BLOCK, SAMPLE EXAM 1 WITH SOLUTIONS, FALL 2019

There are 7 problems worth a total of 50 points.

1. (10 points) Use mathematical induction to prove the given statement.

For every positive integer n,

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

Solution:
First, we prove that the statement is true for $n=1$. For $n=1$, each side is equal to 1 , so the statement is true.

Second, we suppose that the statement is true for $n=k$, for some integer $k \geq 1$. We must show the statement is true for $n=k+1$. So, we are given

$$
\sum_{j=1}^{k}(2 j-1)=k^{2}
$$

We have

$$
\sum_{j=1}^{k+1}(2 j-1)=\left(\sum_{j=1}^{k}(2 j-1)\right)+(2(k+1)-1)=k^{2}+2 k+1=(k+1)^{2}
$$

This shows that the statement is true for $n=k+1$ as desired.
2. (8 points) Negate the statement: There exists a real number b such that $f(x) \leq b$ for all $x \in D$.

Solution: For every real number b, there exists $x \in D$ with $f(x)>b$.
3. (10 points) Find all real values of x that satisy the given expression. Express your answer as an interval on the real line, a union of intervals, a finite set of real numbers, or the empty set. Show your work.

$$
|2 x-5| \leq|x+4|
$$

Solution: Since both sides of the inequality are non-negative we obtain an equivalent inequality by squaring both sides. By bringing all of the terms to the left side and factoring we obtain the equivalent inequality:

$$
(3 x-1)(x-9) \leq 0
$$

So the set of real numbers which satisy the inequality is $\left[\frac{1}{3}, 9\right]$.
4. (10 points) Prove the following: If $|f(x)| \leq M$ for all $x \in[a, b]$, then

$$
-2 M \leq f\left(x_{1}\right)-f\left(x_{2}\right) \leq 2 M
$$

for any $x_{1}, x_{2} \in[a, b]$.
Solution: Suppose that $|f(x)| \leq M$ for all $x \in[a, b]$. Suppose that $x_{1}, x_{2} \in[a, b]$. We have

$$
-M \leq f\left(x_{1}\right) \leq M
$$

and

$$
-M \leq-f\left(x_{2}\right) \leq M
$$

Adding, we obtain

$$
-2 M \leq f\left(x_{1}\right)-f\left(x_{2}\right) \leq 2 M
$$

5. (4 points) Determine if the statement is true or false.

If A and B are sets, then

$$
(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)
$$

Solution: The statement is true. Although you are not expected to give any proofs in the true false questions on the exam, we include a proof here.

First we show that

$$
(A \backslash B) \cup(B \backslash A) \subseteq(A \cup B) \backslash(A \cap B)
$$

Let $x \in(A \backslash B) \cup(B \backslash A)$. Then either $x \in(A \backslash B)$ or $x \in(B \backslash A)$.
Case 1. $x \in(A \backslash B)$.
Then $x \in A$ and $x \notin B$. It follows that $x \in(A \cup B)$ and $x \notin(A \cap B)$. Hence $x \in(A \cup B) \backslash(A \cap B)$.

Case 2. $x \in(B \backslash A)$.
Then $x \in B$ and $x \notin A$. It follows that $x \in(A \cup B)$ and $x \notin(A \cap B)$. Hence $x \in(A \cup B) \backslash(A \cap B)$.

Second, we show that

$$
(A \cup B) \backslash(A \cap B) \subseteq(A \backslash B) \cup(B \backslash A)
$$

Let $x \in(A \cup B) \backslash(A \cap B)$. Then x is in one of the sets A, B but not both. So either $x \in(A \backslash B)$ or $x \in(B \backslash A)$. It follows that $x \in(A \backslash B) \cup(B \backslash A)$.
6. (4 points). Determine if the statement is true or false.

If $f: X \rightarrow Y$ and $A \subseteq X$, then

$$
f^{-1}(f(A))=A
$$

Solution: The statement is false.
Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Set $A=[0,1]$. Then $f(A)=[0,1]$ and

$$
f^{-1}(f(A))=f^{-1}([0,1])=[-1,1]
$$

7. (4 points). Determine if the statement is true or false.

If $S \subseteq \mathbb{R}$ and k is the supremum of S, then $k \in S$.
Solution: The statement is false.
Let S be the open interval $(0,1)$, and let $k=1$. Then k is the supremum of S, and $k \notin S$.

