Advanced Calculus, Dr. Block, Proofs for Exam 2

1. If \(f : [a, b] \to \mathbb{R} \) is continuous, then \(f \in R[a, b] \).

2. Suppose that \(f, g \in R[a, b] \). Let \(n \) be a positive integer. Then
 (a) \(f^n \in R[a, b] \).
 (b) \(f \cdot g \in R[a, b] \).

3. Theorem. If \(f \in R[a, b] \), then \(|f| \in R[a, b] \) and \(|\int_{a}^{b} f| \leq \int_{a}^{b} |f| \).

4. (Fundamental Theorem of Calculus) Suppose that \(f : [a, b] \to \mathbb{R} \) is differentiable and \(f'(x) \in R[a, b] \). Then
 \[
 \int_{a}^{b} f'(x) dx = f(b) - f(a).
 \]

5. Theorem. Suppose that \(f \in R[a, b] \). Define a function \(F : [a, b] \to \mathbb{R} \) by \(F(x) = \int_{a}^{x} f \). Then \(F \) is uniformly continuous.

6. Theorem. (Change of variables) Suppose that \(g : [c, d] \to [a, b] \) is differentiable with \(g(c) = a \) and \(g(d) = b \). Suppose also that \(g' \in R[c, d] \). Finally, suppose that \(f : [a, b] \to \mathbb{R} \) is continuous. Then
 \[
 \int_{c}^{d} (f \circ g) \cdot g' = \int_{a}^{b} f.
 \]