ADVANCED CALCULUS II, DR. BLOCK,
 SPRING 2020, SAMPLE EXAM 2

Note: There are five problems worth 10 points each.

1. For the function $f:[0,5] \rightarrow \mathbb{R}$ given by $f(x)=x^{2}-4 x$ and the partition $P=\{0,2,3,4,5\}$ compute the lower sum $L(P, f)$.
2. Suppose that a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous and nonnegative. Prove that if $\int_{a}^{b} f=0$, then $f(x)=0$ for all $x \in[a, b]$.
3. Prove the following theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is monotonically increasing, then f is Riemann integrable on $[a, b]$.
4. Let $f:[-2,3] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{l}
2|x|+1 \text { if } x \text { is rational } \\
0 \text { if } x \text { is irrational }
\end{array}\right.
$$

Prove that f is not Riemann integrable on $[-2,3]$.
5. Prove that if $f \in R[a, b]$, then $|f| \in R[a, b]$ and

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|
$$

