6. This means that for every natural number x, the statement $\forall y(x < y)$ is true. But as we saw in the third statement, there isn’t even one value of x for which this statement is true. Thus, $\forall x \forall y(x < y)$ is false.

Exercises

*1. Analyze the logical forms of the following statements.
 (a) Anyone who has forgiven at least one person is a saint.
 (b) Nobody in the calculus class is smarter than everybody in the discrete math class.
 (c) Everyone likes Mary, except Mary herself.
 (d) Jane saw a police officer, and Roger saw one too.
 (e) Jane saw a police officer, and Roger saw him too.

2. Analyze the logical forms of the following statements.
 (a) Anyone who has bought a Rolls Royce with cash must have a rich uncle.
 (b) If anyone in the dorm has the measles, then everyone who has a friend in the dorm will have to be quarantined.
 (c) If nobody failed the test, then everybody who got an A will tutor someone who got a D.
 (d) If anyone can do it, Jones can.
 (e) If Jones can do it, anyone can.

3. Analyze the logical forms of the following statements. The universe of discourse is \mathbb{R}. What are the free variables in each statement?
 (a) Every number that is larger than x is larger than y.
 (b) For every number a, the equation $ax^2 + 4x - 2 = 0$ has at least one solution iff $a \geq -2$.
 (c) All solutions of the inequality $x^3 - 3x < 3$ are smaller than 10.
 (d) If there is a number x such that $x^2 + 5x = w$ and there is a number y such that $4 - y^3 = w$, then w is between -10 and 10.

*4. Translate the following statements into idiomatic English.
 (a) $\forall x((H(x) \land \lnot \exists y M(x, y)) \rightarrow U(x))$, where $H(x)$ means “x is a man,” $M(x, y)$ means “x is married to y,” and $U(x)$ means “x is unhappy.”
 (b) $\exists z (P(z, x) \land S(z, y) \land W(y))$, where $P(z, x)$ means “z is a parent of x,” $S(z, y)$ means “z and y are siblings,” and $W(y)$ means “y is a woman.”

5. Translate the following statements into idiomatic mathematical English.
 (a) $\forall x((P(x) \land \lnot(x = 2)) \rightarrow O(x))$, where $P(x)$ means “x is a prime number” and $O(x)$ means “x is odd.”
(b) $\exists x[P(x) \land \forall y(P(y) \rightarrow y \leq x)]$, where $P(x)$ means "x is a perfect number."

6. Are these statements true or false? The universe of discourse is the set of all people, and $P(x, y)$ means "x is a parent of y.”
 (a) $\exists x \forall y P(x, y)$.
 (b) $\forall x \exists y P(x, y)$.
 (c) $\neg \exists x \exists y P(x, y)$.
 (d) $\exists x \neg \exists y P(x, y)$.
 (e) $\exists x \exists y \neg P(x, y)$.

7. Are these statements true or false? The universe of discourse is \mathbb{N}.
 (a) $\forall x \exists y(2x - y = 0)$.
 (b) $\exists y \forall x(2x - y = 0)$.
 (c) $\forall x \exists y(x - 2y = 0)$.
 (d) $\forall x(x < 10 \rightarrow \forall y(y < x \rightarrow y < 9))$.
 (e) $\exists y \exists z(y + z = 100)$.
 (f) $\forall x \exists y(y > x \land \exists z(y + z = 100))$.

8. Same as exercise 7 but with \mathbb{R} as the universe of discourse.
9. Same as exercise 7 but with \mathbb{Z} as the universe of discourse.

2.2. Equivalences Involving Quantifiers

In our study of logical connectives in Chapter 1 we found it useful to examine equivalences between different formulas. In this section, we will see that there are also a number of important equivalences involving quantifiers.

For example, in Example 2.1.2 we represented the statement "Nobody’s perfect” by the formula $\neg \exists x P(x)$, where $P(x)$ meant “x is perfect.” But another way to express the same idea would be to say that everyone fails to be perfect, or in other words $\forall x \neg P(x)$. This suggests that these two formulas are equivalent, and a little thought should show that they are. No matter what $P(x)$ stands for, the formula $\neg \exists x P(x)$ means that there’s no value of x in the universe of discourse for which $P(x)$ is true. But that’s the same as saying that for every value of x in the universe, $P(x)$ is false, or in other words $\forall x \neg P(x)$. Thus, $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$.

Similar reasoning shows that $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$. To say that $\neg \forall x P(x)$ means that it is not the case that for all values of x, $P(x)$ is true. That’s equivalent to saying there’s at least one value of x for which $P(x)$ is false, which is what it means to say $\exists x \neg P(x)$. For example, in Example 2.1.2 we translated “Someone didn’t do the homework” as $\exists x \neg H(x)$, where $H(x)$ stands for “x did the homework.” An equivalent statement would be “Not everyone did the homework,” which would be represented by the formula $\neg \forall x H(x)$.