Proofs Involving Disjunctions

In fact, this rule is the one we used in our first example of deductive reasoning in Chapter 1!

Once again, we end this section with a proof for you to read without the benefit of a preliminary scratch work analysis.

Theorem 3.5.5. Suppose \(m \) and \(n \) are integers. If \(mn \) is even, then either \(m \) is even or \(n \) is even.

Proof. Suppose \(mn \) is even. Then we can choose an integer \(k \) such that \(mn = 2k \). If \(m \) is even then there is nothing more to prove, so suppose \(m \) is odd. Then \(m = 2j + 1 \) for some integer \(j \). Substituting this into the equation \(mn = 2k \), we get \((2j + 1)n = 2k \), so \(2jn + n = 2k \), and therefore \(n = 2k - 2jn = 2(k - jn) \). Since \(k - jn \) is an integer, it follows that \(n \) is even.

Commentary. The overall form of the proof is the following:

Suppose \(mn \) is even.

If \(m \) is even, then clearly either \(m \) is even or \(n \) is even. Now suppose \(m \) is not even. Then \(m \) is odd.

[Proof that \(n \) is even goes here.]

Therefore either \(m \) is even or \(n \) is even.

Therefore if \(mn \) is even then either \(m \) is even or \(n \) is even.

The assumptions that \(mn \) is even and \(m \) is odd lead, by existential instantiation, to the equations \(mn = 2k \) and \(m = 2j + 1 \). Although the proof doesn’t say so explicitly, you are expected to work out for yourself that in order to prove that \(n \) is even it suffices to find an integer \(c \) such that \(n = 2c \). Straightforward algebra leads to the equation \(n = 2(k - jn) \), so the choice \(c = k - jn \) works.

Exercises

\(\ast \)1. Suppose \(A, B, \) and \(C \) are sets. Prove that \(A \cap (B \cup C) \subseteq (A \cap B) \cup C \).

\(\ast \)2. Suppose \(A, B, \) and \(C \) are sets. Prove that \((A \cup B) \setminus C \subseteq A \cup (B \setminus C) \).

\(\ast \)3. Suppose \(A \) and \(B \) are sets. Prove that \(A \setminus (A \setminus B) = A \cap B \).

\(\ast \)4. Suppose \(A \subseteq B \cap C \) and \(A \cup C \subseteq B \cup C \). Prove that \(A \subseteq B \).

\(\ast \)5. Recall from Section 1.4 that the symmetric difference of two sets \(A \) and \(B \) is the set \(A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B) \). Prove that if \(A \triangle B \subseteq A \) then \(B \subseteq A \).

\(\ast \)6. Suppose \(A, B, \) and \(C \) are sets. Prove that \(A \cup C \subseteq B \cup C \) iff \(A \setminus C \subseteq B \setminus C \).

\(\ast \ast \)7. Prove that for any sets \(A \) and \(B \), \(\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B) \).
8. Prove that for any sets A and B, if $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ then either $A \subseteq B$ or $B \subseteq A$.

9. Suppose x and y are real numbers and $x \neq 0$. Prove that $y + 1/x = 1 + y/x$ if either $x = 1$ or $y = 1$.

10. Prove that for every real number x, if $|x - 3| > 3$ then $x^2 > 6x$. (Hint: According to the definition of $|x - 3|$, if $x - 3 \geq 0$ then $|x - 3| = x - 3$, and if $x - 3 < 0$ then $|x - 3| = 3 - x$. The easiest way to use this fact is to break your proof into cases. Assume that $x - 3 \geq 0$ in case 1, and $x - 3 < 0$ in case 2.)

*11. Prove that for every real number x, $|2x - 6| > x$ iff $|x - 4| > 2$. (Hint: Read the hint for exercise 10.)

12. (a) Prove that for all real numbers a and b, $|a| \leq b$ iff $-b \leq a \leq b$.

(b) Prove that for any real number x, $-|x| \leq x \leq |x|$. (Hint: Use part (a).)

(c) Prove that for all real numbers x and y, $|x + y| \leq |x| + |y|$. (This is called the triangle inequality. One way to prove this is to combine parts (a) and (b), but you can also do it by considering a number of cases.)

13. Prove that for every integer x, $x^2 + x$ is even.

14. Prove that for every integer x, the remainder when x^4 is divided by 8 is either 0 or 1.

*15. Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets.

(a) Prove that $\cup(\mathcal{F} \cup \mathcal{G}) = (\cup \mathcal{F}) \cup (\cup \mathcal{G})$.

(b) Can you discover and prove a similar theorem about $\cap(\mathcal{F} \cup \mathcal{G})$?

16. Suppose \mathcal{F} is a nonempty family of sets and B is a set.

(a) Prove that $B \cup (\cup \mathcal{F}) = \cup(\mathcal{F} \cup \{B\})$.

(b) Prove that $B \cup (\cap \mathcal{F}) = \cap_{A \in \mathcal{F}}(B \cup A)$.

(c) Can you discover and prove a similar theorem about $B \cap (\cap \mathcal{F})$?

17. Suppose \mathcal{F}, \mathcal{G}, and \mathcal{H} are nonempty families of sets and for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$, $A \cup B \in \mathcal{H}$. Prove that $\cap \mathcal{H} \subseteq (\cap \mathcal{F}) \cup (\cap \mathcal{G})$.

18. Suppose A and B are sets. Prove that $\forall x(x \in A \triangle B \leftrightarrow (x \in A \leftrightarrow x \notin B))$.

*19. Suppose A, B, and C are sets. Prove that $A \triangle B$ and C are disjoint iff $A \cap C = B \cap C$.

20. Suppose A, B, and C are sets. Prove that $A \triangle B \subseteq C$ iff $A \cup C = B \cup C$.

21. Suppose A, B, and C are sets. Prove that $C \subseteq A \triangle B$ iff $C \subseteq A \cup B$ and $A \cap B \cap C = \emptyset$.

*22. Suppose A, B, and C are sets.

(a) Prove that $A \setminus C \subseteq (A \setminus B) \cup (B \setminus C)$.

(b) Prove that $A \triangle C \subseteq (A \triangle B) \cup (B \triangle C)$.
Suppose A, B, and C are sets.
(a) Prove that $(A \cup B) \triangle C \subseteq (A \triangle C) \cup (B \triangle C)$.
(b) Find an example of sets A, B, and C such that $(A \cup B) \triangle C \neq (A \triangle C) \cup (B \triangle C)$

Suppose A, B, and C are sets.
(a) Prove that $(A \triangle C) \cap (B \triangle C) \subseteq (A \cap B) \triangle C$.
(b) Is it always true that $(A \cap B) \triangle C \subseteq (A \triangle C) \cap (B \triangle C)$? Give either a proof or a counterexample.

Suppose A, B, and C are sets. Consider the sets $(A \setminus B) \triangle C$ and $(A \triangle C) \setminus (B \triangle C)$. Can you prove that either is a subset of the other? Justify your conclusions with either proofs or counterexamples.

Consider the following putative theorem.

Theorem? For every real number x, if $|x - 3| < 3$ then $0 < x < 6$.

Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary real number, and suppose $|x - 3| < 3$. We consider two cases:

Case 1. $x - 3 \geq 0$. Then $|x - 3| = x - 3$. Plugging this into the assumption that $|x - 3| < 3$, we get $x - 3 < 3$, so clearly $x < 6$.

Case 2. $x - 3 < 0$. Then $|x - 3| = 3 - x$, so the assumption $|x - 3| < 3$ means that $3 - x < 3$. Therefore $3 < 3 + x$, so $0 < x$.

Since we have proven both $0 < x$ and $x < 6$, we can conclude that $0 < x < 6$.

Consider the following putative theorem.

Theorem? For any sets A, B, and C, if $A \setminus B \subseteq C$ and $A \nsubseteq C$ then $A \cap B \neq \emptyset$.

Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the theorem correct?

Proof. Since $A \nsubseteq C$, we can choose some x such that $x \in A$ and $x \notin C$. Since $x \notin C$ and $A \setminus B \subseteq C$, $x \notin A \setminus B$. Therefore either $x \notin A$ or $x \in B$. But we already know that $x \in A$, so it follows that $x \in B$. Since $x \in A$ and $x \in B$, $x \in A \cap B$. Therefore $A \cap B \neq \emptyset$.

Consider the following putative theorem.

Theorem? $\forall x \in \mathbb{R} \exists y \in \mathbb{R} (xy^2 \neq y - x)$.

Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the theorem correct?
Proof. Let x be an arbitrary real number.

Case 1. $x = 0$. Let $y = 1$. Then $xy^2 = 0$ and $y - x = 1 - 0 = 1$, so $xy^2
eq y - x$.

Case 2. $x
eq 0$. Let $y = 0$. Then $xy^2 = 0$ and $y - x = -x
eq 0$, so $xy^2
eq y - x$.

Since these cases are exhaustive, we have shown that $\exists y \in \mathbb{R}(xy^2 \neq y - x)$. Since x was arbitrary, this shows that $\forall x \in \mathbb{R}\exists y \in \mathbb{R}(xy^2 \neq y - x)$.

29. Prove that if $\forall x P(x) \rightarrow \exists x Q(x)$ then $\exists x(P(x) \rightarrow Q(x))$. (Hint: Remember that $P \rightarrow Q$ is equivalent to $\neg P \vee Q$).

*30. Consider the following putative theorem.

Theorem? Suppose A, B, and C are sets and $A \subseteq B \cup C$. Then either $A \subseteq B$ or $A \subseteq C$.

Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary element of A. Since $A \subseteq B \cup C$, it follows that either $x \in B$ or $x \in C$.

Case 1. $x \in B$. Since x was an arbitrary element of A, it follows that $\forall x \in A(x \in B)$, which means that $A \subseteq B$.

Case 2. $x \in C$. Similarly, since x was an arbitrary element of A, we can conclude that $A \subseteq C$.

Thus, either $A \subseteq B$ or $A \subseteq C$.

31. Prove $\exists x(P(x) \rightarrow \forall y P(y))$.

3.6. Existence and Uniqueness Proofs

In this section we consider proofs in which the goal has the form $\exists! x P(x)$. As we saw in Section 2.2, this can be thought of as an abbreviation for the formula $\exists x(P(x) \land \neg \exists y(P(y) \land y \neq x))$. According to the proof strategies discussed in previous sections, we could therefore prove this goal by finding a particular value of x for which we could prove both $P(x)$ and $\neg \exists y(P(y) \land y \neq x)$. The last part of this proof would involve proving a negated statement, but we can reexpress it as an equivalent positive statement:

$\neg \exists y(P(y) \land y \neq x)$

is equivalent to $\forall y \neg (P(y) \land y \neq x)$ (quantifier negation law),

which is equivalent to $\forall y (\neg P(y) \lor y = x)$ (DeMorgan’s law),

which is equivalent to $\forall y (P(y) \rightarrow y = x)$ (conditional law),