Suppose that X is a nonempty set. Let A denote the set of functions from X to X. Let B denote the set of $h \in A$ such that h is bijective. Define a relation R on A by

$$R = \{(f, g) \in A \times A : \exists h \in B \text{ such that } h \circ f = g \circ h\}.$$

Observe that if $(f, g) \in A \times A$, $h \in B$ and $h \circ f = g \circ h$, then

$$h^{-1} \circ h \circ f = h^{-1} \circ g \circ h.$$

1. Prove that R is an equivalence relation on A.

 proof:
 First, we prove that R is reflexive. Suppose that $f \in A$. The identity function $i_X : X \to X$ is bijective, so $i_X \in B$. Moreover, $i_X \circ f = f \circ i_X$. It follows that $(f, f) \in R$. Since f was arbitrary, R is reflexive.

 Second, we prove that R is symmetric. Suppose that $f, g \in A$, and $(f, g) \in R$. There is some $h \in B$ with $h \circ f = g \circ h$. Since h is bijective, h^{-1} exists and $h^{-1} \in B$. We have

 $$f = h^{-1} \circ h \circ f = h^{-1} \circ g \circ h.$$

 It follows that

 $$f \circ h^{-1} = h^{-1} \circ g \circ h \circ h^{-1} = h^{-1} \circ g.$$

 Thus, $(g, f) \in R$. Since f and g were arbitrary, R is symmetric.

 Third, we prove that R is transitive. Suppose that $f, g, k \in A$, $(f, g) \in R$, and $(g, k) \in R$. For some $h_1, h_2 \in B$ we have

 $$h_1 \circ f = g \circ h_1, \text{ and } h_2 \circ g = k \circ h_2.$$

 Set $h_3 = h_2 \circ h_1$. Then $h_3 \in B$, and

 $$h_3 \circ f = h_2 \circ h_1 \circ f = h_2 \circ g \circ h_1 = k \circ h_2 \circ h_1 = k \circ h_3.$$

 It follows that $(f, k) \in R$. Since f, g, and k were arbitrary, R is transitive.

 Finally, since R is reflexive, transitive, and symmetric, R is an equivalence relation.
2. Prove that if \((f, g) \in R\), then \((f \circ f, g \circ g) \in R\).

proof:
Suppose that \((f, g) \in R\). Then there is some \(h \in B\) with \(h \circ f = g \circ h\). We have

\[
h \circ f \circ f = g \circ h \circ f = g \circ g \circ h.
\]

Thus, \((f \circ f, g \circ g) \in R\).

3. Suppose that \((f, g) \in R\). Suppose that there is some \(x \in X\) with \(f(x) = x\). Prove that there is some \(y \in X\) with \(g(y) = y\).

proof:
Suppose that \((f, g) \in R\). Suppose that there is some \(x \in X\) with \(f(x) = x\). Since \((f, g) \in R\), there is some \(h \in B\) with \(h \circ f = g \circ h\).

Set \(y = h(x)\). Then \(y \in X\), and

\[
g(y) = g(h(x)) = h(f(x)) = h(x) = y.
\]