MHF 3202, Dr. Block, Sample Exam 1 with answers, Spring 2020 There are 7 problems worth a total of 40 points.

1. (5 points) Write the following set by listing the elements of the set between braces. $\mathscr{P}(\{1,2\}) \times \mathscr{P}(\{3\})$

Answer:

 $\{(\phi,\phi),(\phi,\{3\}),(\{1\},\phi),(\{1\},\{3\}),(\{2\},\phi),(\{2\},\{3\}),(\{1,2\},\phi),(\{1,2\},\{3\})\}$

2. (6 points) Construct a truth table for the formula $(P \land \sim Q) \Rightarrow R$.

Answer:

P	Q	R	$\sim Q$	$P\wedge \sim Q$	$(P \land \sim Q) \Rightarrow R$
T	T	T	F	F	Т
T	T	F	F	F	T
T	F	T	Т	Т	Т
T	F	F	Т	Т	F
F	T	T	F	F	Т
F	T	F	F	F	Т
F	F	T	Т	F	Т
F	F	F	Т	F	Т

3. (6 points) Negate the following sentence.

For every $\epsilon > 0$ there exists $\delta > 0$ such that if $|x - 5| < \delta$, then $|x^2 - 25| < \epsilon$.

Answer: There exists $\epsilon > 0$ such that for all $\delta > 0$ there exists x with $|x - 5| < \delta$ and $|x^2 - 25| \ge \epsilon$.

4. (2 points) Determine whether the following statement is true or false.

$$\exists a \in \mathbb{Z}, \, \forall b \in \mathbb{Z}, \, a+b=0$$

Answer: False.

5. (7 points) Prove the following using a direct proof.

If $x \in \mathbb{R}$ and 0 < x < 4, then $\frac{4}{x(4-x)} \ge 1$.

Proof: Suppose that $x \in \mathbb{R}$ and 0 < x < 4. Since the square of any real number is greater than or equal to zero, we have $(x - 2)^2 \ge 0$. By algebra, we obtain $x^2 - 4x + 4 \ge 0$. Adding -4 to each side of the inequality, we have $x^2 - 4x \ge -4$. Now, multiplying each side by -1 and factoring, we obtain

$$x(4-x) \le 4.$$

Since 0 < x < 4, using order properties of \mathbb{R} we have $\frac{1}{x(4-x)} > 0$. So multipying each side of the displayed inequality by $\frac{1}{x(4-x)}$, we obtain $1 \leq \frac{4}{x(4-x)}$. Therefore, $\frac{4}{x(4-x)} \geq 1$.

(7 points) Prove the following with contrapositive proof.
Suppose a ∈ Z. If a² is not divisible by 4, then a is odd.

Proof: Suppose that a is not odd. Then a is even. So for some integer k we have a = 2k. It follows that

$$a^2 = 4k^2 = 4j.$$

where $j = k^2 \in \mathbb{Z}$. Therefore, a^2 is divisible by 4.

7. (7 points) Prove the following using either direct proof or contrapositive proof. If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

Proof: (direct proof) Suppose that $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$. By definition, 5|(a-1). So for some integer k we have a-1=5k. It follows that

$$a^{2} - 1 = (a + 1)(a - 1) = (a + 1)(5k) = 5j,$$

where $j = ak + k \in \mathbb{Z}$. Thus, $5|(a^2 - 1)$. Therefore, $a^2 \equiv 1 \pmod{5}$.