MHF 3202, Dr. Block, Sample Exam 1 with answers, Spring 2020
There are 7 problems worth a total of 40 points.

1. (5 points) Write the following set by listing the elements of the set between braces. $\mathscr{P}(\{1,2\}) \times \mathscr{P}(\{3\})$

Answer:

$$
\{(\phi, \phi),(\phi,\{3\}),(\{1\}, \phi),(\{1\},\{3\}),(\{2\}, \phi),(\{2\},\{3\}),(\{1,2\}, \phi),(\{1,2\},\{3\})\}
$$

2. (6 points) Construct a truth table for the formula $(P \wedge \sim Q) \Rightarrow R$.

Answer:

P	Q	R	$\sim Q$	$P \wedge \sim Q$	$(P \wedge \sim Q) \Rightarrow R$
T	T	T	F	F	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
F	T	F	F	F	T
F	F	T	T	F	T
F	F	F	T	F	T

3. (6 points) Negate the following sentence.

For every $\epsilon>0$ there exists $\delta>0$ such that if $|x-5|<\delta$, then $\left|x^{2}-25\right|<\epsilon$.
Answer: There exists $\epsilon>0$ such that for all $\delta>0$ there exists x with $|x-5|<\delta$ and $\left|x^{2}-25\right| \geq \epsilon$.
4. (2 points) Determine whether the following statement is true or false.

$$
\exists a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a+b=0
$$

Answer: False.
5. (7 points) Prove the following using a direct proof.

If $x \in \mathbb{R}$ and $0<x<4$, then $\frac{4}{x(4-x)} \geq 1$.
Proof: Suppose that $x \in \mathbb{R}$ and $0<x<4$. Since the square of any real number is greater than or equal to zero, we have $(x-2)^{2} \geq 0$. By algebra, we obtain $x^{2}-4 x+4 \geq 0$. Adding -4 to each side of the inequality, we have $x^{2}-4 x \geq-4$. Now, multiplying each side by -1 and factoring, we obtain

$$
x(4-x) \leq 4 .
$$

Since $0<x<4$, using order properties of \mathbb{R} we have $\frac{1}{x(4-x)}>0$. So multipying each side of the displayed inequality by $\frac{1}{x(4-x)}$, we obtain $1 \leq \frac{4}{x(4-x)}$. Therefore, $\frac{4}{x(4-x)} \geq 1$.
6. (7 points) Prove the following with contrapositive proof.

Suppose $a \in \mathbb{Z}$. If a^{2} is not divisible by 4 , then a is odd.
Proof: Suppose that a is not odd. Then a is even. So for some integer k we have $a=2 k$. It follows that

$$
a^{2}=4 k^{2}=4 j,
$$

where $j=k^{2} \in \mathbb{Z}$. Therefore, a^{2} is divisible by 4 .
7. (7 points) Prove the following using either direct proof or contrapositive proof. If $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 5)$, then $a^{2} \equiv 1(\bmod 5)$.

Proof: (direct proof) Suppose that $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 5)$. By definition, $5 \mid(a-1)$. So for some integer k we have $a-1=5 k$. It follows that

$$
a^{2}-1=(a+1)(a-1)=(a+1)(5 k)=5 j,
$$

where $j=a k+k \in \mathbb{Z}$. Thus, $5 \mid\left(a^{2}-1\right)$. Therefore, $a^{2} \equiv 1(\bmod 5)$.

