MHF 3202: Sample Proof

Problem 18 page 134 Suppose that \(F \) and \(G \) are families of sets. Prove that
\[
(\bigcup F) \cap (\bigcup G) \subseteq \bigcup (F \cap G) \iff \forall A \in F \forall B \in G ((A \cap B) \subseteq \bigcup (F \cap G))
\]

Proof.
First, suppose that
\[
(\bigcup F) \cap (\bigcup G) \subseteq \bigcup (F \cap G)
\]

Suppose that \(A \in F \) and \(B \in G \).
Suppose that \(x \in A \cap B \).
Then \(x \in (\bigcup F) \cap (\bigcup G) \). It follows that \(x \in \bigcup (F \cap G) \). Since \(x \) was arbitrary, we conclude that \((A \cap B) \subseteq \bigcup (F \cap G) \). Since \(A \) and \(B \) were arbitrary, we conclude that
\[
\forall A \in F \forall B \in G ((A \cap B) \subseteq \bigcup (F \cap G))
\]

Second, suppose that
\[
\forall A \in F \forall B \in G ((A \cap B) \subseteq \bigcup (F \cap G))
\]

Suppose that \(x \in (\bigcup F) \cap (\bigcup G) \). Then for some \(A \in F \) we have \(x \in A \), and for some \(B \in G \) we have \(x \in B \). Hence, \(x \in A \cap B \). It follows that \(x \in \bigcup (F \cap G) \). Since \(x \) was arbitrary, we conclude that \((\bigcup F) \cap (\bigcup G) \subseteq \bigcup (F \cap G) \).

Finally, (from the two implications proved above) we conclude that
\[
(\bigcup F) \cap (\bigcup G) \subseteq \bigcup (F \cap G) \iff \forall A \in F \forall B \in G ((A \cap B) \subseteq \bigcup (F \cap G))
\]