1. In these notes we suppose that R is a relation on a set A. Also, recall that xRy means $(x, y) \in R$. We summarize some basic definitions.

2. R is reflexive iff $\forall x \in A(xRx)$.

3. R is symmetric iff $\forall x \in A, \forall y \in A, (xRy \rightarrow yRx)$.

4. R is transitive iff $\forall x \in A \forall y \in A, \forall z \in A, ((xRy \land yRz) \rightarrow xRz)$.

5. R is antisymmetric iff $\forall x \in A \forall y \in A, ((xRy \land yRx) \rightarrow x = y)$.

6. R is a partial order iff R is reflexive, transitive, and antisymmetric.

7. R is a total order iff R is a partial order and also the following holds:
 \[\forall x \in A \forall y \in A (xRy \lor yRx). \]

8. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $b \in B$. We say that b is a smallest (or R-smallest) element of B iff $\forall x \in B(bRx)$.

9. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $b \in B$. We say that b is a minimal (or R-minimal) element of B iff
 \[\neg \exists x \in B (xRb \land x \neq b). \]

10. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $a \in A$. We say that a is a lower bound for B iff
 \[\forall x \in B(aRx). \]

11. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $a \in A$. We say that a is an upper bound for B iff
 \[\forall x \in B(xRa). \]

12. Suppose that R is a partial order on A, and $B \subseteq A$. Let L be the set of all lower bounds for B. If L has a largest element, then this largest element is called the greatest lower bound of B.

13. Suppose that R is a partial order on A, and $B \subseteq A$. Let U be the set of all upper bounds for B. If U has a smallest element, then this smallest element is called the least upper bound of B.

14. Suppose that A is a set and $\mathcal{F} \subseteq \mathcal{P}(A)$. We say that \mathcal{F} is pairwise disjoint iff every pair of distinct elements of \mathcal{F} are disjoint. We say that \mathcal{F} is a partition of A iff \mathcal{F} is pairwise disjoint, $\bigcup \mathcal{F} = A$, and $\emptyset \notin \mathcal{F}$.

15. Suppose that R is a relation on a set A. We say that R is an equivalence relation iff R is reflexive, transitive, and symmetric.

16. Suppose that R is an equivalence relation on A. Suppose that $x \in A$. The equivalence class of x denoted $[x]$ is given by

$$[x] = \{y \in A | xRy\}.$$

We let A/R (in words, A modulo R) denote the set of equivalence classes.

17. We have the following theorem: Suppose that R is an equivalence relation on A. Then A/R is a partition of A.

18. We also have the following theorem: Suppose that A is a set, and \mathcal{F} is a partition of A. Then there is an equivalence relation R on A such that $A/R = \mathcal{F}$.