1. Definition: Suppose that F is a relation from A to B. We say that F is a function from A to B iff for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$. We use the notation $F : A \rightarrow B$ to indicate that F is a function from A to B. Also, if $a \in A$, we let $F(a)$ denote the unique $b \in B$ such that $(a, b) \in F$.

2. Theorem: Suppose that f and g are functions from A to B. Then $f = g$ if and only if $\forall a \in A (f(a) = g(a))$.

3. Theorem: Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$. Then $g \circ f : A \rightarrow C$ and for every $a \in A$ we have $(g \circ f)(a) = g(f(a))$.

4. Definition and Remark. Suppose that $f : A \rightarrow B$. We say that f is one-to-one iff for all $a_1 \in A$ and $a_2 \in A$ if $f(a_1) = f(a_2)$ then $a_1 = a_2$. We say that f is onto iff for every $b \in B$ there exists $a \in A$ with $f(a) = b$. Note that f is onto if and only if B is the range of f.

5. Theorem: Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$. If f and g are one-to-one, then $g \circ f$ is one-to-one. If f and g are onto, then $g \circ f$ is onto.

6. Remark and Theorem. Suppose that $f : A \rightarrow B$. Then f is also a relation from A to B. So the inverse relation f^{-1} is defined and is a relation from B to A. We have the following theorem: f^{-1} is a function from B to A if and only if f is one-to-one and onto.

7. Theorem: Suppose that $f : A \rightarrow B$ and $g : B \rightarrow A$. Suppose also that $g \circ f = i_A$ and $f \circ g = i_B$. Then $g = f^{-1}$.