1. Suppose that \(a, b, c, d \) are real numbers. Prove that if \(b \neq 0 \) and \(d \neq 0 \), then

\[
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.
\]

Note: This is Theorem 1.7 part (h) in the notes on real numbers.

Answer:

\[
\frac{a}{b} + \frac{c}{d} = ab^{-1} + cd^{-1} \quad \text{by Theorem 1.7 part (a)}
\]
\[
= ab^{-1}dd^{-1} + cd^{-1}bb^{-1} \quad \text{(using MIV)}
\]
\[
= b^{-1}d^{-1}(ad + bc) \quad \text{(using D)}
\]
\[
= (bd)^{-1}(ad + bc) \quad \text{by Theorem 1.4 part (l)}
\]
\[
= \frac{ad + bc}{bd} \quad \text{by Theorem 1.7 part (a)}
\]

2. Suppose that \(a, b \) are real numbers. Prove that

(i) \(a > 0, b > 0 \) imply \(ab > 0 \).

(ii) \(a > 0, b < 0 \) imply \(ab < 0 \).

(iii) \(a < 0, b < 0 \) imply \(ab > 0 \).

Note: This is Theorem 1.15 part (d) in the notes on real numbers.

Answer:

(i) Suppose that \(a > 0 \) and \(b > 0 \). Starting with the inequality \(a > 0 \), and multiplying by \(b \) we obtain \(ab > 0b \) (by OM). Since \(0b = 0 \), we have \(ab > 0 \).

(ii) Suppose that \(a > 0 \) and \(b < 0 \). Starting with the inequality \(b < 0 \), and multiplying by \(a \) we obtain \(ab < 0a \) (by OM). Since \(0a = 0 \), we have \(ab < 0 \).

(iii) Suppose that \(a < 0 \) and \(b < 0 \). Then \(-a > 0 \) and \(-b > 0 \) by 1.15 part b. By part (i) above we have \((-a)(-b) > 0 \). Since \(ab = (-a)(-b) \) we have \(ab > 0 \).