If \(ab = 0 \), then \(a = 0 \) or \(b = 0 \).

Proof: Suppose that \(ab = 0 \).

Suppose that \(a \neq 0 \). Then \(a^{-1} \) exists by MIV, and \(a^{-1}(ab) = 0 \) by 1.4 part (f). Using MID, MIV, and MA we have

\[
b = 1b = (a^{-1}a)b = a^{-1}(ab) = 0.
\]

We conclude that if \(a \neq 0 \), then \(b = 0 \). It follows that \(a = 0 \) or \(b = 0 \).