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Notes for Chapter 1

1.

In this class, we adopt an informal approach to set theory. A set is
a collection of things called elements. We use the notation x € A to
denote that x is an element of the set A. We use the notation z ¢ A
to denote that x is not an element of the set A. Two sets are equal
if and only if they contain exactly the same elements. A set S may
be either finite or infinite. If S is a finite set, the cardinality of S
denoted |S| is the number of elements in |5].

. The unique set with cardinality zero is called the empty set and

denoted ¢.

We let R denote the set of real numbers, Q the set of rational num-
bers, Z the set of integers, Z = {...,—3,-2,—1,0,1,2,3,...}, and
N the set of positive integers, N ={1,2,3,...}.

. We can in general form a new set from an existing set A by taking

all elements of A which satisify a given property. Forming a new set
in this way is called specification.

For example, the set of rational numbers is given by

Q={zeR: z="Lfor somep, q € Zwithq # 0}.
q

. Suppose that A and B are sets. We let A x B denote the set of

ordered pairs (a,b) such that a € A and b € B. Two ordered pairs
(¢,d) and (v, w) are equal if and only if ¢ = v and d = w. The set
A x B is called the Cartesian product of A and B.

More generally, if n is a positive integer and Aq, Ao, ... A, are sets,
we define the Cartesian product of these sets by

Ay x Agx- - x Ay ={(x1, 29, ..., xy) 111 € A9 € Ay, ... 1y € Apt

The expression (1,x2,...,x,) is called an ordered n-tuple. Two
ordered n-tuples (z1,x9,...,x,) and (y1,¥s,...,y,) are equal if and
only if x; = y; for each + = 1,2,...,n. Note the meaning of ...

(dots).
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If Ais a set and n is a positive integer we define the Cartesian
power A" by
A=A X Ay x --- X A,

where A; = A for each i =1,2,...,n.

Suppose that A and B are sets. We say that A is a subset of B,
denoted A C B, if and only if every element of A is also an element
of B. We note that two sets A and B are equal if and only if A C B
and B C A.

Note that for any set A, we have ¢ C A.

Suppose that A and B are sets. We assume that there exist sets
ANB, AUB, and A — B given by

re€ANBifand only if x € A and z € B,
reAUBifandonlyifz € Aor z € B,
re€A—Bifandonly if x € Aand x ¢ B.

These sets are called the intersection, union, and difference of
the sets A and B. The notation A\ B is often used instead of A — B.

If A is a set, we assume that there exists a unique set S such that
x € S if and only if x C A. This set is called the power set of A
and is denoted by Z(A). So x € H(A) if and only if + C A. Note
that if a finite set A has n elements, then &?(A) is a finite set which
has 2" elements.

Suppose that S is a set, and for each s € S, a set A, is defined.
We assume that there are sets denoted by | J,.¢ As and [),.q As such
that € (J,.q As if and only if there exists s € S with z € A, and
r € (,eg As if and only if for every s € S we have z € A,.

The set S is called an index set, the family of sets Ay is called
an indexed family of sets, the set | J,.q As is called the union
of the indexed family of sets, and the set (), o A is called the
intersection of the indexed family of sets.

If S ={1,2,...,n}, instead of |J
AiUAU---UA,.

seS

. n
wes As we often write | J,_; A; or
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If S =N, instead of |J,.q As we often use the notation | J;-, A; or
AjUA U ...

The same is true for (),.q As.

Sometimes, we restrict attention to subsets of some understood larger
set, which we call a universal set or universe. If a universal set U
is understood, we may define the complement of a set B. (If it is not
clear what the universe is we say the complement of B in U. ) In our
text, the complement of B is denoted by B and given by B = U — B.

We can not just assume that anything is a set without the possibility
of running into problems. See Russell’s paradox on page 32 of the
text. On the other hand, we may form new sets from existing sets
using specification, unions, intersections, power sets, and Cartesian
products without running into problems.

Before we begin to prove some results, we will accept some things as
facts. We will accept the basic properties of real numbers (see the
link on the course website). Also,

NCZCQCR.
In addition, we will accept the following as facts.

Fact. Any nonempty subset of N has a smallest element.

Fact. Any finite nonempty subset of R has a largest element and a
smallest element.

Fact and Notation. If z € R and = > 0, then there is a unique
y € R such that y > 0 and y? = . This number y is denoted by /7.

Fact. Ifa,be Z,thena+b€Z, —a € Z,ab € Z, and a — b € Z.
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Notes for Chapter 2

A statement is a sentence that is either definitely true or definitely
false. An open sentence is a sentence whose truth depends on the
value of one or more variables. If P and () are statements or open
sentences, we can form three new expressions:

P AQ (and)

PV Q (or)

~ P (negation)

See the truth tables for these expressions on page 15 of the text.

We can also form more compicated logical expressions such as
(PAQ)V (~ PA~Q)
and construct truth tables.

We say that two logical expressions P and () are logically equivalent
if and only if P is true whenever () is true, and P is false whenever
() is false. See the laws on page 52 of the text.

A logical expressions which is always true is called a tautology. A
logical expressions which is always false is called a contradiction.

If P and () are statements, we can also form the two new statements:
P = @ (implies) (conditional statement)

P < @ (is equivalent to) (biconditional statement).

See the truth tables for these statements on pages 43 and 47 of the

text.

Note that P = @ is equivalent to ~ PV @, and ~ (P = Q) is
equivalent to PA ~ Q).

Also, PV (@ is equivalent to ~ P = (). This equivalence is often used
to prove a statement of the form PV Q.

Contrapositive Law.

P = () is equivalent to ~ Q =~ P.
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If C'is a contradiction, then (PA ~ Q) = C'is equivalent to P = Q.
This fact, is the basis for proof by contradiction, which we will discuss
later.

Here are some ways to express the statement P = () :
If P then Q).

P implies Q).

P is a sufficient condition for Q).

() is a necessary condition for P.
P only if Q.

Here are some ways to express the statement P < () :
P if and only if Q.

() is a necessary and sufficient condition for P.

The converse of a statement P = () is the statement () = P. The
converse of a true statement need not be true.

We introduce the universal quantifier V and the existential quantifier
3. A statement of the form Vz, P(x) means that for all x in the
universe P(x) is true. A statement of the form Vo € B, P(z) means
that for all x in the set B, P(x) is true. A statement of the form
Jz, P(x) means that there exists x in the universe such that P(z) is
true. A statement of the form 3z € B, P(z) means that there exists
x in the set B with P(z) true. In mathematics the words ”for some
x” mean "there exists x”.

Quantifier Negation laws:
~ (dz € A, P(z)) is equivalent to Vo € A, ~ P(x).
~ (Vx € A, P(x)) is equivalent to 3z € A, ~ P(x).
Many mathematical statements are in the form

Ve e A, (P(x) = Q(x)).

Sometimes, this will be shortened to P(z) = Q(z). When this is
done, the Vx € A is understood.
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To prove a statement of this form, we begin the proof with ”Suppose
x € A and P(z).” Then we prove Q(x). Sometimes the "z € A” is
understood but not explicitly stated.

Here are three rules of inference that we sometimes use.

(modus ponens) If P and P = @ are both true, we can conclude
that @ is true.

(modus tollens) If @ is false and P = (@ is true, we can conclude
that P is false.

(elimination) If PV @ is true and P is false, then @ is true.

Notes for Chapter 3

We may later use the following. We will accept this without proof.

Theorem (Binomial Theorem). Suppose that a,b € R and n €

N. Then .
(a+b)" = Z (Z) a" o,

k=0
where

Notes for Chapter 4

Here are some important terms that are use in mathematics.

A theorem is a mathematical statement that has been verified to
be true.

A proof of a theorem is a written verification that shows that the
theorem is unequivocally true.

Sometimes in mathematical material the word proposition is used
in place of the word theorem. The most significant results are called
theorems, and the other results are called proposition.

A lemma is a theorem whose main purpose is to prove another
theorem.

A corollary is a result which follows easily from another theorem.
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To prove a statement of the form P = () with a direct proof:
Begin the proof with ”Suppose P”
End the proof with ” Therefore ()).”

Definition. Suppose a and b are integers. We say that a divides b,
written alb if and only if b = ac for some ¢ € Z. In this case we also
say that a is a divisor of b, and that b is a multiple of a.

Proposition. Suppose that a, b, c € Z. If a|b and a|c, then a|(b+ ¢).
Proposition. Suppose that a,b,c € Z. If a|b, then al(bc).

Proposition. Suppose that n and k are positive integers and k|n.
Then k € {1,2,...,n}.

Theorem (The Division Algorithm). If a,b € Z and b > 0,
then there exist unique integers ¢ and r such that a = ¢b + r and
0<r<hb.

Definition. An integer n is even if and only if n=2a for some a € Z.
An integer n is odd if and only if n=2a+1 for some a € Z.

92

Remark. It is a common convention in mathematics to use ”if”
instead ”if and only if” in definitions. With this convention it is un-
derstood that the word ”if” means ”if and only if”. This convention
is used in the text, but not in these notes. On the other hand in
mathematical theorems, this convention is never used. In theorems,
7if” always has a different meaning than ”if and only if”.

Proposition. An integer n is either even or odd, but not both even
and odd.

Definition. Two integers have the same parity if and only if they
are both even or both odd. Two integers have the opposite parity
if and only if they do not have the same parity.

Definition. Suppose that n is an integer with n > 2. We say that
n is composite if and only if there exists a divisor b of n with
1 < b < n. We say that n is prime if and only if n is not composite.
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Remark. Suppose that n is an integer with n > 2. Then n is prime
if and only if n has exactly two positive divisors, 1 and n.

Definition. Suppose that a and b are integers, not both zero. The
greatest common divisor of a and b, denoted gcd(a,b), is the
largest integer that divides both a and 0.

Definition. Suppose that a and b are non-zero integers. The least
common multiple of a and b, denoted lcm(a,b), is the smallest
positive integer that is a multiple of both a and b.

Proposition. If a,b,c € N, then lem(ca, cb) = ¢ - lem(a, b).

Notes for Chapter 5

To prove a statement of the form P = () by contrapositive, begin
the proof with: ”Suppose ~ ().” End the proof with: ”Therefore
~ P.

Definition. Let m > 1 be an integer, and let z and y be integers.
We say that z is congruent to y modulo m if and only if m divides
x — 1. We use the notation,

r =y (modm).

Definition. Suppose that a,n,r € Z, n > 0, and 0 < r < n. If there
is an integer ¢ with @ = gqn + r, we say that a has remainder r
when divided by n.

Notes for Chapter 6

To prove a statement P with a proof by contradiction: Begin the
proof with ”Suppose ~ P.”

End the proof by proving a contradiction (a statement of the form
RA ~ R).
Sometimes either R or ~ R is something known by a previous result.

This method is valid because if C'is a contradiction, then (~ P = ()
is equivalent to P.
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Here is one way prove a statement of the form P = () with a proof
by contradiction: Begin the proof with ”Suppose P.”

Next say: ”Proceeding by contradiction, suppose ~ ().”

End the proof by proving a contradiction (a statement of the form
RA ~ R).

Here is a slight variation in the wording (as suggested in the text). To
prove a statement of the form P = () with a proof by contradiction:
Begin the proof with ”For the sake of contradiction, suppose P and
~ Q.”

End the proof by proving a contradiction (a statement of the form
RA ~ R).

This method of proof is valid because if C' is a contradiction, then
(PA ~ Q) = C'is equivalent to P = Q.

Proposition. Suppose that n is a positive integer and a is an inte-
ger. Then there exists a unique r € {0,1,...,n — 1} such that

a =r(modn).

Fact. If ¢ is a positive rational number, then there exist positive
integers a and b such that ¢ = § and the greatest common divisor of
a and b is 1. (Informally we say the fraction is reduced.)

Proposition. Suppose that n > 2 is an integer. Then n has a prime
divisor.

If a case by case argument is used in a proof by contradiction, a
contradiction must be obtained in each case.

Proposition. Suppose that z,vy,2 € Z and 2? + y?> = 322 Then
r=y=2=0.

Notes for Chapter 7
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To prove a statement of the form P < () the most common way
is to prove that both P = () and () = P. It is best to put each
of these statements with the proof in a separate paragraph. We
sometimes call the two statements the two directions of the proof.
Each direction may be proved by direct proof, contrapositive proof,
or proof by contradiction. You do not have to use the same method
for each direction.

To prove a statement of the form 3z € A, P(x):

Begin the proof by exhibiting a particular xy € A.

End the proof by proving that P(x() holds.

To prove a statement of this form: ”There exists a unique x € A
such that P(z) holds”.

Begin the proof of existence by exhibiting a particular xy € A.

End the proof of existence by proving that P(xy) holds.

Prove uniqueness as follows:

Suppose © € A and P(x) holds. Then prove that x = xy.

An alternate way to prove uniqueness is: Suppose that x1 € A, x5 €
A and both P(z1) and P(x2) hold. Then prove that z1 = xs.

Here are some ways to prove a statement of the form PV Q).

* Suppose ~ P and prove Q.

* Suppose ~ @ and prove P.

* Proceed by contradiction.

* Make cases and deal with each case separately. When you do this
the cases must cover every possibility. Here is one example: Suppose
that x is an integer.

Case 1. z is even.
Case 2. x is odd.

Proposition. Suppose that a and b are positive integers. Then
there exist integers k£ and ¢ such that

gcd(a,b) = ak + bL.
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Notes for Chapter 8

To prove that a € {x : P(x)}, prove that P(a) is true. To prove that
a € {xeS: P(x)}, prove that a € S and prove that P(a) is true.

Suppose that A and B are sets. The statement A C B is equivalent
to the conditional statement:

"If a € A, then a € B.”
So any of the methods for proving conditional statements may be

used.

One common method to prove that two sets are equal is to prove
that each of the sets is a subset of the other.

Definition. A natural number x is perfect if and only if the sum of
all of the positive divisor of x which are less than z is equal to x.

Theorem. If A= {2""1(2" —1):n € N,and2" — 1is prime} and
P ={p e N: pis perfect}, then A C P.

Definition. A prime number of the form (2" — 1) for some n € N is
called a Mersenne prime.

Theorem. If A= {2""12"—1):n € N,and2" — 1is prime} and
E = {p € N: pis perfect and even}, then A = E.
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Notes for Chapter 9
To disprove a statement P, prove ~ P.

The most common method used to disprove a universal statement,
is to give a counterexample. Note that the negation of the statement

Ve e S, P(x)

is the statement
dr € S, ~ P(x).

Recall item 57 above.
To disprove a statement with contradiction: Suppose the statement
is true and then deduce a contradiction.
Notes for Chapter 10
Theorem (Mathematical Induction). Suppose that j is a non-

negative integer. Suppose that for each integer n > j we have an
associated statement .S,,. Suppose that

1. S is true and

2. For all k € Z with k > j, if S is true, then Sy, is also true.
Then for all n € Z with n > j the statement S,, is true.

Theorem (Mathematical Induction, Strong Form). Suppose

that j is a non-negative integer. Suppose that for each integer n > j
we have an associated statement S,,. Suppose that

1. .S; is true and

2. For all k € Z with k > j if each of the statements S;, Sj;1,... Sk
are true, then the statement Sy is also true.

Then for all n € Z with n > j the statement 5, is true.

A method of proof similar to mathematical induction is proof by
smallest counterexample. Suppose that j is a non-negative integer.
Suppose that for each integer n > j we have an associated statement
S,. If the statements S,, are not all true, then there is a smallest
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k such that S, is false. This can sometimes be used to obtain a
contradiction.

Notes for Chapter 11

Definition and Notation. A relation on a set A is a subset R of
the Cartesian product A x A. We often use the notation xRy instead
of (z,y) € R.

Definition. Suppose that R is a relation on a set A.

R is reflexive if and only if for all Vx € A, zRx.

R is symmetric if and only if Vz,y € A, (tRy = yRz).

R is transitive if and only if Va,y, 2 € A, ((tRy A yRz) = zRz).
Definition. Suppose that R is a relation on a set A. We say that

R is an equivalence relation on A if and only if R is reflexive,
transitive, and symmetric.

Definition. Suppose that R is an equivalence relation on A. Suppose
that x € A. The equivalence class of = denoted [z] is given by

[x] = {y € A: zRy}.

We let A/R (in words, A modulo R) denote the set of equivalence
classes.

Theorem. Suppose that R is an equivalence relation on A. Suppose
that x,y € A. Then xRy if and only if [z] = [y].

Definition. Suppose that D and E are sets. We say that D and E
are disjoint if and only if DN E = ¢.

Definition. Suppose that A is a set and F C Z(A). We say that
F is pairwise disjoint iff every pair of distinct elements of F are
disjoint. We say that F is a partition of A if and only if F is
pairwise disjoint, ¢ ¢ F, and the union of all of the sets which are
elements of F is equal to A.

Propostion. Suppose that A is a set, and F C Z(A) such that
¢ ¢ F. Then F is a partition of A if and only if for every x € A
there is a unique B € F such that z € B.
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Theorem. Suppose that R is an equivalence relation on A. Then
A/R is a partition of A.

Theorem. Suppose that A is a set, and F is a partition of A. Then
there is an equivalence relation R on A such that A/R = F.

Theorem. Let m > 2 be an integer, and let C), denote the set of
ordered pairs (z,y) € (Z x Z) such that

r =y (modm).

Then (), is an equivalence relation on Z. Moreover, there are exactly
m distinct equivalence classes given by [0], [1],...,[m — 1].

Definition. The set of equivalence classes for the relation C), in the
previous theorem is denoted by Z,,. This set is sometimes called the
integers modulo m.

Theorem. Let m > 2 be an integer. Suppose that a,b,c,d € Z
satisfy
a = c¢(modm) and b = d (modm).

Then a + b = ¢+ d (modm) and ab = cd (modm).

Definition and Remark. We can define two operations, which we
call addition and multiplication, on the set Z,, by

[a] + [b] = [a + b] and [a] - [b] = [a - D]

This is well-defined in light of the previous theorem.
Notes for Chapter 12

Definition. We say that f is a relation from A to B if and only if
(A% B).

Definition. Suppose that f is a relation from A to B. We say that
f is a function from A to B if and only if for every a € A there is
a unique b € B such that (a,b) € f. We use the notation f: A — B
to indicate that f is a function from A to B. Also, if a € A, we let
f(a) denote the unique b € B such that (a,b) € f.



99. Definition. Suppose that f : A — B. The set A is called the
domain of f. The set B is called the codomain or target space
of f. The range of f is the set of all b € B such that there exists
a € A with f(a) =b.

100. Remark. In the text a definition of equality of two functions is
given. The definition in the text is not a standard definition. Here
is my definition.

101. Definition. We say that two functions f : A - Band g: C — D
are equal if and only if A = C, B = D, and the set f is equal to the
set g.

102. Remark. Two functions f and ¢ from A to B are equal if and only
if for every a € A, f(a) = g(a).

103. Definition and Remark. Suppose that f : A — B. We say that f
is injective or one-to-one if and only if for all a1 € A and ay € A
if a; # ag then f(ay) # f(ag). We say that f is surjective or onto
if and only if for every b € B there exists a € A with f(a) = b. We
say that f is bijective if and only if f is injective and surjective.

Note that f is injective if and only if for all a; € A and ay € A if
f(a1) = f(ag) then a; = as. Note also that f is surjective if and only
if B is the range of f.

104. Remark. Suppose that f: A — B. Then f is bijective if and only
if for every b € B there is a unique a € A such that f(a) = b.

105. Remark (Pigeon Principle, function version). Suppose that A
and B are finite sets and f: A — B.
If |A| > |B|, then f is not injective.
If |A| < |B|, then f is not surjective.
If |A| = |B|, then f is injective if and only if f is surjective.

106. Definition. Suppose that f : A — B and g : B — C. Then the
composition is the function go f : A — C defined as follows: If

a € A then (go f)(a) = g(f(a)).
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Theorem. Suppose that f: A— Band g: B— C.If f and g are
injective, then g o f is injective. If f and ¢ are surjective, then go f
is surjective.

Theorem. Composition of functions is associative. That is, if f :
A— B,g: B— Cand h:C — D are functions, then

(hog)of=ho(gof)

Definition. Suppose that f is a relation from A to B. The inverse
relation of f is the relation from B to A given by

f_lz{(b7a) : (aab) Ef}

Remark and Theorem. Suppose that f : A — B. Then f is also
a relation from A to B. So the inverse relation f~! is defined and
is a relation from B to A. We have the following theorem: f~!is a
function from B to A if and only if f is bijective.

Definition. Let A be a set. The identity function on A is the
function i4 : A — A given by i4(z) = x for every x € A.

Theorem. Suppose that f : A — B is bijective. Then f~1o f =iy,
and fo f~l =ig.

Theorem: Suppose that f: A — B and g : B — A. Suppose also
that go f = 14 and f og = ig. Then f and g are bijective and
g=f"

Theorem: Suppose that f : A — B and g : B — A. Suppose the
following holds:

Vee A, Vye B, (f(z) =y g(y) = =)
Then go f =i4 and fog = ip. So, f and g are bijective and g = f~'.

Theorem: Suppose that f: A — B and g : B — C. Suppose that
f and g are bijective. Then g o f is bijective and

(gof)y ' =f"og™h
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Definition. Suppose that f: A — B.
If X C A, the image of X is the set f(X) = {f(z):z € X}.
If Y C B, the preimage of Y is the set

fAY)y={zcA: f(x) €Y}

Notes for Chapter 14

Definition. We say that two sets A and B have the same cardi-
nality, written |A| = |B], if and only if there is a bijective function

f:A— B.

Proposition. Suppose that A, B, C' are sets. Then:

1. |A] = |A].

2. If |A| = |B|, then |B| = |A]|.

3. If |A| = |B] and |B| = |C|, then |A| = |C].

Theorem: Suppose that A is a set. Then there does not exist a

surjective function f : A — Z(A). So A and Z(A) do not have the
same cardinality.

Theorem (Cantor-Bernstein-Schroder Theorem): Suppose that
A and B are sets. Suppose that there exist injective functions

f:A— Band g: B — A. Then A and B have the same car-
dinality.



