MHF 3202, Dr. Block, Chapter 4 and 5 Notes

1. In these notes we suppose that \(R \) is a relation on a set \(A \). Also, recall that \(xRy \) means \((x, y) \in R\). We summarize some basic definitions.

2. \(R \) is reflexive iff \(\forall x \in A (xRx) \).

3. \(R \) is symmetric iff \(\forall x \in A, \forall y \in A, (xRy \rightarrow yRx) \).

4. \(R \) is transitive iff \(\forall x \in A \forall y \in A, \forall z \in A, ((xRy \land yRz) \rightarrow xRz) \).

5. \(R \) is antisymmetric iff \(\forall x \in A \forall y \in A, ((xRy \land yRx) \rightarrow x = y) \).

6. \(R \) is a partial order iff \(R \) is reflexive, transitive, and antisymmetric.

7. \(R \) is a total order iff \(R \) is a partial order and also the following holds:
 \[\forall x \in A \forall y \in A (xRy \lor yRx) \).

8. Suppose that \(R \) is a partial order on \(A \). Suppose that \(B \subseteq A \) and \(b \in B \). We say that \(b \) is a smallest (or \(R \)-smallest) element of \(B \) iff \(\forall x \in B (bRx) \).

9. Suppose that \(R \) is a partial order on \(A \). Suppose that \(B \subseteq A \) and \(b \in B \). We say that \(b \) is a minimal (or \(R \)-minimal) element of \(B \) iff
 \[\neg \exists x \in B (xRb \land x \neq b) \).

10. Suppose that \(R \) is a partial order on \(A \). Suppose that \(B \subseteq A \) and \(a \in A \). We say that \(a \) is a lower bound for \(B \) iff
 \[\forall x \in B (aRx) \).

11. Suppose that \(R \) is a partial order on \(A \). Suppose that \(B \subseteq A \) and \(a \in A \). We say that \(a \) is an upper bound for \(B \) iff
 \[\forall x \in B (xRa) \).

12. Suppose that \(R \) is a partial order on \(A \), and \(B \subseteq A \). Let \(L \) be the set of all lower bounds for \(B \). If \(L \) has a largest element, then this largest element is called the greatest lower bound of \(B \).
13. Suppose that R is a partial order on A, and $B \subseteq A$. Let U be the set of all upper bounds for B. If U has a smallest element, then this smallest element is called the least upper bound of B.

14. Suppose that A is a set and $\mathcal{F} \subseteq \mathcal{P}(A)$. We say that \mathcal{F} is pairwise disjoint iff every pair of distinct elements of \mathcal{F} are disjoint. We say that \mathcal{F} is a partition of A iff \mathcal{F} is pairwise disjoint, $\bigcup \mathcal{F} = A$, and $\emptyset \notin \mathcal{F}$.

15. Suppose that R is a relation on a set A. We say that R is an equivalence relation iff R is reflexive, transitive, and symmetric.

16. Suppose that R is an equivalence relation on A. Suppose that $x \in A$. The equivalence class of x denoted $[x]$ is given by

$$[x] = \{y \in A | xRy\}.$$ We let A/R (in words, A modulo R) denote the set of equivalence classes.

17. We have the following theorem: Suppose that R is an equivalence relation on A. Then A/R is a partition of A.

18. We also have the following theorem: Suppose that A is a set, and \mathcal{F} is a partition of A. Then there is an equivalence relation R on A such that $A/R = \mathcal{F}$.

19. Suppose that F is a relation from A to B. We say that F is a function from A to B iff for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$. We use the notation $F : A \to B$ to indicate that F is a function from A to B. Also, if $a \in A$, we let $f(a)$ denote the unique $b \in B$ such that $(a, b) \in F$.

20. We have the following theorem: Suppose that f and g are functions from A to B. Then $f = g$ if and only if $\forall a \in A (f(a) = g(a))$.

21. We have the following theorem: Suppose that $f : A \to B$ and $g : B \to C$. Then $g \circ f : A \to C$ and for every $a \in A$ we have $(g \circ f)(a) = g(f(a))$.
22. Suppose that \(f : A \to B \). We say that \(f \) is one-to-one iff for all \(a_1 \in A \) and \(a_2 \in A \) if \(f(a_1) = f(a_2) \) then \(a_1 = a_2 \). We say that \(f \) is onto iff for every \(b \in B \) there exists \(a \in A \) with \(f(a) = b \). Note that \(f \) is onto if and only if \(B \) is the range of \(f \).

23. Suppose that \(f : A \to B \). Then \(f \) is also a relation from \(A \) to \(B \). So the inverse relation \(f^{-1} \) is defined and is a relation from \(B \) to \(A \). We have the following theorem: \(f^{-1} \) is a function from \(B \) to \(A \) if and only if \(f \) is one-to-one and onto.

24. We have the following theorem: Suppose that \(f : A \to B \) and \(g : B \to A \). Suppose also that \(g \circ f = i_A \) and \(f \circ g = i_B \). Then \(g = f^{-1} \).