1. Definition and Axiom. Suppose that A and B are sets. We let $A \times B$ denote the set of ordered pairs (a, b) such that $a \in A$ and $b \in B$. Two ordered pairs (c, d) and (v, w) are equal if and only if $c = v$ and $v = w$. Any subset R of $A \times B$ is called a relation from A to B.

2. Theorem. Suppose that A, B, C, D are sets.
 1. $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
 2. $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
 3. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
 4. $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.
 5. $A \times \emptyset = \emptyset \times A = \emptyset$.

3. Definition. Suppose that R is a relation from A to B. We define the domain and range of R as follows:
 \[\text{Dom}(R) = \{a \in A | \exists b \in B ((a, b) \in R)\}. \]
 \[\text{Ran}(R) = \{b \in B | \exists a \in A ((a, b) \in R)\}. \]

 Also, we define the inverse relation R^{-1} from B to A by
 \[R^{-1} = \{(y, x) \in B \times A | (x, y) \in R\}. \]

4. Definition. Suppose that R is a relation from A to B, and S is a relation from B to C. The composition of S and R is the relation from A to C given by
 \[S \circ R = \{(a, c) \in A \times C | \exists b \in B ((a, b) \in R \land (b, c) \in S)\}. \]

5. Theorem. Suppose that R is a relation from A to B, and S is a relation from B to C. Then
 \[(S \circ R)^{-1} = R^{-1} \circ S^{-1}. \]

6. Theorem. Suppose that R is a relation from A to B, S is a relation from B to C, and T is a relation from C to D. Then
 \[(T \circ S) \circ R = T \circ (S \circ R). \]
7. Definition and Notation. If A is a set and R is a relation from A to A, we say that R is a relation on the set A. From now in these notes, we suppose that R is a relation on the set A. Also, we sometimes use the notation xRy instead of $(x, y) \in R$.

8. Theorem. Suppose that R, S, T are relations on A. Suppose that $S \subseteq R$. Then $S \circ T \subseteq R \circ T$ and $T \circ S \subseteq T \circ R$.

9. Definition. R is reflexive iff for all $\forall x \in A (xRx)$.

R is symmetric iff $\forall x \in A, \forall y \in A (xRy \rightarrow yRx)$.

R is transitive iff $\forall x \in A \forall y \in A, \forall z \in A, ((xRy \land yRz) \rightarrow xRz)$.

R is antisymmetric iff $\forall x \in A \forall y \in A, ((xRy \land yRx) \rightarrow x = y)$.

10. Definition. The identity relation on A is given by

$$i_A = \{(x, y) \in A \times A | y = x\}.$$

11. Theorem.

R is reflexive iff $i_A \subseteq R$.

R is symmetric iff $R = R^{-1}$.

R is transitive iff $R \circ R \subseteq R$.

12. Definition. R is a partial order iff R is reflexive, transitive, and antisymmetric.

13. Definition. R is a total order iff R is a partial order and also the following holds:

$$\forall x \in A \forall y \in A (xRy \lor yRx).$$

14. Definition. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $b \in B$. We say that b is a smallest (or R-smallest) element of B iff $\forall x \in B (bRx)$.

15. Theorem. Suppose that R is a partial order on A and $B \subseteq A$. If B has a smallest element, then this smallest element is unique.
16. Definition. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $b \in B$. We say that b is a minimal (or R-minimal) element of B iff

$$\neg \exists x \in B(xRb \land x \neq b).$$

17. Theorem. Suppose that R is a partial order on A and $B \subseteq A$. Suppose that b is the smallest element of B. Then b is also the unique minimal element of B.

18. Theorem. Suppose that R is a total order on A and $B \subseteq A$. Suppose that b is a minimal element of B. Then b is also the smallest element of B.

19. Definition. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $a \in A$. We say that a is a lower bound for B iff

$$\forall x \in B(aRx).$$

20. Definition. Suppose that R is a partial order on A. Suppose that $B \subseteq A$ and $a \in A$. We say that a is an upper bound for B iff

$$\forall x \in B(xRa).$$

21. Definition. Suppose that R is a partial order on A, and $B \subseteq A$. Let L be the set of all lower bounds for B. If L has a largest element, then this largest element is called the greatest lower bound of B.

22. Definition. Suppose that R is a partial order on A, and $B \subseteq A$. Let U be the set of all upper bounds for B. If U has a smallest element, then this smallest element is called the least upper bound of B.

23. Definition. Suppose that A is a set and $\mathcal{F} \subseteq \mathcal{P}(A)$. We say that \mathcal{F} is pairwise disjoint iff every pair of distinct elements of \mathcal{F} are disjoint. We say that \mathcal{F} is a partition of A iff \mathcal{F} is pairwise disjoint, $\bigcup \mathcal{F} = A$, and $\emptyset \notin \mathcal{F}$.

24. Definition. R is an equivalence relation iff R is reflexive, transitive, and symmetric.
25. Definition. Suppose that R is an equivalence relation on A. Suppose that $x \in A$. The equivalence class of x denoted $[x]$ is given by

\[[x] = \{ y \in A | xRy \}. \]

We let A/R (in words, A modulo R) denote the set of equivalence classes.

26. Theorem. Suppose that R is an equivalence relation on A. Suppose that $x, y \in A$. Then xRy iff $[x] = [y]$.

27. Theorem. Suppose that R is an equivalence relation on A. Then A/R is a partition of A.

28. Theorem. Suppose that A is a set, and \mathcal{F} is a partition of A. Then there is an equivalence relation R on A such that $A/R = \mathcal{F}$.

29. Definition. We let \mathbb{Z} denote the set of integers,

\[\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}. \]

30. Theorem. The sum of two integers is an integer. The product of two integers is an integer. The additive inverse of an integer is an integer.

31. Theorem. (Division Algorithm) If a and b are integers with $a > 0$, then there exist unique integers q and r such that $b = qa + r$ and $0 \leq r < a$.

32. Definition. Let a and b be integers. We say that a divides b iff there exists an integer c such that $b = ac$.

33. Definition. Let $m \geq 2$ be an integer, and let x and y be integers. We say that x is congruent to y modulo m iff m divides $x - y$. We use the notation,

\[x \equiv y \pmod{m}. \]

34. Theorem. Let $m \geq 2$ be an integer, and let C_m denote the set of ordered pairs $(x, y) \in (\mathbb{Z} \times \mathbb{Z})$ such that

\[x \equiv y \pmod{m}. \]
Then C_m is an equivalence relation. Moreover, there are exactly m distinct equivalence classes given by $[0], [1], \ldots, [m-1]$.

35. Remark and Definition. Consider the case $m = 2$ in the previous theorem. There are two distinct equivalence classes, $[0], [1]$. Integers in $[0]$ are called even. Integers in $[1]$ are called odd.

36. Definition: Suppose that F is a relation from A to B. We say that F is a function from A to B iff for every $a \in A$ there is a unique $b \in B$ such that $(a, b) \in F$. We use the notation $F : A \rightarrow B$ to indicate that F is a function from A to B. Also, if $a \in A$, we let $F(a)$ denote the unique $b \in B$ such that $(a, b) \in F$.

37. Theorem: Suppose that f and g are functions from A to B. Then $f = g$ if and only if $\forall a \in A (f(a) = g(a))$.

38. Theorem: Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$. Then $g \circ f : A \rightarrow C$ and for every $a \in A$ we have $(g \circ f)(a) = g(f(a))$.

39. Definition and Remark. Suppose that $f : A \rightarrow B$. We say that f is one-to-one iff for all $a_1 \in A$ and $a_2 \in A$ if $f(a_1) = f(a_2)$ then $a_1 = a_2$. We say that f is onto iff for every $b \in B$ there exists $a \in A$ with $f(a) = b$. Note that f is onto if and only if B is the range of f.

40. Remark. Suppose that $f : A \rightarrow B$. Then f is one-to-one and onto iff for all $b \in B$ there is a unique $a \in A$ with $f(a) = b$.

41. Theorem: Suppose that $f : A \rightarrow B$ and $g : B \rightarrow C$. If f and g are one-to-one, then $g \circ f$ is one-to-one. If f and g are onto, then $g \circ f$ is onto.

42. Remark and Theorem. Suppose that $f : A \rightarrow B$. Then f is also a relation from A to B. So the inverse relation f^{-1} is defined and is a relation from B to A. We have the following theorem: f^{-1} is a function from B to A if and only if f is one-to-one and onto.

43. Theorem: Suppose that $f : A \rightarrow B$ and $g : B \rightarrow A$. Suppose also that $g \circ f = i_A$ and $f \circ g = i_B$. Then $g = f^{-1}$.
44. Axiom. (Well-ordering principle). Every nonempty subset of \(\mathbb{N} \) has a smallest element.

45. Theorem. (Mathematical Induction). Suppose \(j \in \mathbb{N} \). Suppose that
\(P(x) \) is a statement with a free variable. Suppose that
1. \(P(j) \) and
2. For all \(k \in \mathbb{N} \) with \(k \geq j \) if \(P(k) \) holds then \(P(k + 1) \) also holds.
Then for all \(n \in \mathbb{N} \) with \(n \geq j \) we have \(P(n) \).

46. Remark. Similar to Mathematical Induction, we sometimes use recursive definitions. We may define a function \(f \) with domain \(\mathbb{N} \) by defining \(f(0) \) and defining \(f(k + 1) \) in terms of \(f(k) \). For example, if \(x \) is a real number we may define \(x^n \) by
\(x^0 = 1 \) and \(x^{(k+1)} = xx^k \).

47. Theorem. (Mathematical Induction, Strong Form). Suppose \(j \in \mathbb{N} \). Suppose that \(P(x) \) is a statement with a free variable. Suppose that
1. \(P(j) \) and
2. For all \(k \in \mathbb{N} \) with \(k \geq j \) if \(P(s) \) holds for all \(s \in \mathbb{N} \) with \(j \leq s \leq k \) then \(P(k + 1) \) also holds.
Then for all \(n \in \mathbb{N} \) with \(n \geq j \) we have \(P(n) \).