MHF 3202, Dr. Block, Quiz 4 with answers, Spring 2020

Use the method of direct proof to prove each of the following statements.

1. (2 points) If x is an even integer, then x^{2} is even.

Proof: Suppose that x is an even integer. Then for some integer k, we have $x=2 k$. It follows that $x^{2}=4 k^{2}=2\left(2 k^{2}\right)$. Also, $2 k^{2}$ is an integer. Therefore, x^{2} is even.
2. (2 points) Suppose that $a, b \in \mathbb{Z}$. If $a \mid b$, then $a^{2} \mid b^{2}$.

Proof: Suppose that $a, b \in \mathbb{Z}$, and $a \mid b$. Then for some integer k, we have $b=a k$. It follows that $b^{2}=\left(a^{2}\right)\left(k^{2}\right)$. Also, k^{2} is an integer. Therefore, $a^{2} \mid b^{2}$.
3. (3 points) If $x \in \mathbb{R}$ and $0<x<4$, then $\frac{4}{x(4-x)} \geq 1$.

Proof: Suppose that $x \in \mathbb{R}$ and $0<x<4$. Since the square of any real number is greater than or equal to zero, we have $(x-2)^{2} \geq 0$. By algebra, we obtain $x^{2}-4 x+4 \geq 0$. Adding -4 to each side of the inequality, we have $x^{2}-4 x \geq-4$. Now, multiplying each side by -1 and factoring, we obtain

$$
x(4-x) \leq 4
$$

Since $0<x<4$, using order properties of \mathbb{R} we have $\frac{1}{x(4-x)}>0$. So multipying each side of the displayed inequality by $\frac{1}{x(4-x)}$, we obtain $1 \leq \frac{4}{x(4-x)}$. Therefore, $\frac{4}{x(4-x)} \geq 1$.
4. (3 points) If a is an integer and $a^{2} \mid a$, then $a \in\{-1,0,1\}$.

Proof: Suppose that a is an integer and $a^{2} \mid a$. Then for some integer k, we have $a=a^{2} k$. We have 2 cases.
Case 1. $a=0$. Then $a \in\{-1,0,1\}$.
Case 2. $a \neq 0$. Then multiplying each side of the equality $a=a^{2} k$ by $\frac{1}{a}$, we obtain $1=a k$. Since k and a are integers, either $k=a=1$ or $k=a=-1$. Thus, $a \in\{-1,0,1\}$.
Therefore, in all possible cases we have $a \in\{-1,0,1\}$.

