1. (3 points) Write the following as an English sentence. Say whether it is true or false.

\[\forall x \in \mathbb{R}, \exists n \in \mathbb{N}, x^n \geq 0 \]

Answer: For every real number \(x \) there is a natural number \(n \) such that \(x^n \geq 0 \).

2. (3 points) Translate the following sentence into symbolic logic.

There exists a real number \(a \) for which \(a + x = x \) for every real number \(x \).

Answer: \(\exists a \in \mathbb{R}, \forall x \in \mathbb{R}, a + x = x \)

3. (4 points) Negate the following sentence. Note that \(x \) is a variable.

For every positive number \(\epsilon \), there is a positive number \(M \) for which \(|f(x) - b| < \epsilon \) whenever \(x > M \).

Answer: There exists a positive number \(\epsilon \) such that for every positive number \(M \) there exists a number \(x \) which satisfies \(x > M \) and \(|f(x) - b| \geq \epsilon \).

Alternate Answer: There exists a positive number \(\epsilon \) with the property that for every positive number \(M \) there exists \(x > M \) with \(|f(x) - b| \geq \epsilon \).