MHF 3202, Dr. Block, Sample Exam 1 with answers

There are 8 problems worth a total of 40 points.

1. (4 points) Let R stand for the statement "it is raining," S stand for the statement "it is snowing," and C stand for the statement "the game has been canceled." Express the following sentence as a logical formula.

If the game has been canceled, then either it is raining or it is snowing.

Answer:

$$C \to (R \lor S)$$

2. (6 points) Construct a truth table for the formula $(P \land \neg Q) \rightarrow R$.

Answer:

P	Q	R	$\neg Q$	$P \wedge \neg Q$	$(P \land \neg Q) \to R$
T	T	T	F	F	Т
T	Τ	F	F	F	Т
T	F	T	Т	T	Т
T	F	F	Т	Т	F
F	Τ	T	F	F	Т
F	Τ	F	F	F	Т
F	F	T	Т	F	Т
F	F	F	Т	F	Т

3. (6 points) Use the laws of logic stated in the text to prove that the formulas $(P \lor \neg R) \land (Q \lor \neg R)$ and $\neg((\neg(P \land Q)) \land R)$ are equivalent.

Use one law at a time and state the name of the law you are using in each step.

Answer:

$$\neg((\neg(P \land Q)) \land R) \equiv \neg \neg(P \land Q) \lor \neg R \qquad \text{DeMorgan}$$
$$\equiv (P \land Q) \lor \neg R \qquad \text{Double Negation}$$
$$\equiv \neg R \lor (P \land Q) \qquad \text{Commutative}$$
$$\equiv (\neg R \lor P) \land (\neg R \lor Q) \qquad \text{Distributive}$$
$$\equiv (P \lor \neg R) \land (Q \lor \neg R) \qquad \text{Commutative}$$

4. (5 points) Find a formula which uses only the connectives \land , \lor and \neg which is equivalent to $P \rightarrow (Q \rightarrow R)$.

Answer:

$$\neg P \lor (\neg Q \lor R)$$

5. (4 points) Draw a Venn diagram for the sets A, B, and C, and shade in the region on diagram which corresponds to $(A \cup B) \smallsetminus (C \smallsetminus B)$.

Answer: I will post a Venn diagram on a separate link.

6. (5 points) Let P, Q, R represent the statements $x \in A, x \in B, x \in C$, respectively. Express the statement $x \in A \cap (B \setminus C)$ as a logical formula in terms of P, Q, R.

Answer:

$$P \land (Q \land \neg R)$$

7. (5 points) Negate the following statement and then reexpress the result as a positive statement.

$$\exists x \forall y [y > x \to \exists z (z^2 + 5z = y)]$$

Answer:

$$\forall x \exists y [(y > x) \land \forall z (z^2 + 5z \neq y)]$$

8. (5 points) Let I be the index set $\{1, 2, 3\}$. For each $i \in I$, let

 $A_i = \{i, i+1, i+2, i+5\}.$

List the elements of the following sets:

 $\bigcup_{i \in I} A_i$ $\bigcap_{i \in I} A_i$

Answer: $\bigcup_{i \in I} A_i = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $\bigcap_{i \in I} A_i = \{3\}$