TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 4

- 401. Definition. Let X and Y be topological spaces, and let $f: X \to Y$. We say f is an open map if and only if for every open subset V of X, f(V) is open in Y. We say f is a closed map if and only if for every closed subset V of X, f(V) is closed in Y.
- 402. Problem. Consider the projection $p_1 : \mathbb{R}^2 \to \mathbb{R}$. Is p_1 an open map? Is p_1 a closed map?
- 403. Definition. Let S^1 denote the set of $(x,y) \in \mathbb{R} \times \mathbb{R}$ such that $x^2 + y^2 = 1$. This space is called the circle.
- 404. Problem. Define a function $p: \mathbb{R} \to S^1$ by $p(t) = (\cos(2\pi t), \sin(2\pi t))$. Is p continuous? Is p an open map? Is p a closed map?

Hint: You may use the fact that the sine and cosine functions are continuous, and other known facts about these functions.

- 405. Definition. Let X and Y be topological spaces, and let $p: X \to Y$ be surjective. We say p is a quotient map if and only if the following condition holds: A subset U of Y is open in Y if and only if $p^{-1}(U)$ is open in X.
- 406. Proposition. Let X and Y be topological spaces, and let $p: X \to Y$ be a surjective map. The function p is a quotient map if and only if the following condition holds: A subset K of Y is closed in Y if and only if $p^{-1}(K)$ is closed in X.
- 407. Definition. Let X and Y be topological spaces, and let $p: X \to Y$ be surjective. We say a subset A of X is saturated (with respect to p) if and only if $A = p^{-1}(B)$ for some subset B of Y.
- 408. Proposition. Let X and Y be topological spaces, and let $p: X \to Y$ be a continuous, surjective map. The function p is a quotient map if and only if the following condition holds: If A is a saturated open subset of X, then p(A) is an open subset of Y.
- 409. Proposition. Let X and Y be topological spaces, and let $p: X \to Y$ be a continuous, surjective map. If p is an open map, then p is a quotient map.
- 410. Proposition. Let X and Y be topological spaces, and let $p: X \to Y$ be a continuous, surjective map. If p is a closed map, then p is a quotient map.
- 411. Proposition and Definition. Let X be a topological space, let S be a set, and let $p: X \to S$ be surjective. There exists a unique topology on S such that p is a quotient map. This topology is called the quotient topology induced by p.

- 412. Definition. Let X be a topological space, and let X^* be a partition of X (a collection of non-empty, pairwise disjoint, subsets of X, whose union is X). Let $p: X \to X^*$ be the surjective function which assigns to each point of X the element of X^* containing it. The space X^* with the quotient topology induced by p is called a quotient space of X.
- 413. Definition and Remark. Let X be a topological space. Let \sim be an equivalence relation on X, and for each $x \in X$, let [x] denote the equivalence class of x. Let X/\sim denote the set of equivalence classes. The function $p:X\to X/\sim$ defined by p(x)=[x] is called the projection. The set X/\sim with the quotient topology induced by the function p is called the quotient space of X by \sim .

Recall that any equivalence relation on X corresponds to a partition of X and vice versa. Thus the notations X^* and X/\sim are notations for the same topological space. So we will only use the notation X/\sim for the quotient space obtained from either a partition of X or an equivalence relation on X.

- 414. Theorem. Let $p: X \to Y$ be a quotient map. Let Z be a topological space, and let $g: X \to Z$ be a function that is constant on each set $p^{-1}(\{y\})$ for $y \in Y$. Then g induces a function $f: Y \to Z$ such that $f \circ p = g$. The induced map f is continuous if and only if g is continuous. Also, f is a quotient map if and only if g is a quotient map.
- 415. Theorem. Let $g: X \to Z$ be a continuous surjective map. Let X/\sim be the quotient space obtained from the partition of X which consists of all sets of the form $g^{-1}(\{z\})$ where $z \in Z$. Let $p: X \to X/\sim$ be defined by $p(x) = g^{-1}(\{g(x)\})$. (Observe that p is the projection as in 413 above.)
- (i) The map g induces a bijective continuous map $f: X/\sim \to Z$ such that $f\circ p=g$. Moreover, f is a homeomorphism if and only if g is a quotient map.
 - (ii) If Z is Hausdorff, so is X/\sim .
- 416. Problem. Define an equivalence relation \sim on $X = \mathbb{R}$ by $x \sim y$ if and only if x y is an integer. Prove that X / \sim is homeomorphic to the circle S^1 .
- 417. Problem. Define an equivalence relation \sim on X = [0,1] by $x \sim x$ for all x, $0 \sim 1$, and $1 \sim 0$. Prove that X/\sim is homeomorphic to the circle S^1 .
- 418. Problem. Define an equivalence relation \sim on $X = \mathbb{R} \times \mathbb{R}$ by $(x, y) \sim (v, w)$ if and only if both x v and y w are integers. Prove that X/\sim is homeomorphic to the torus $S^1 \times S^1$.
- 419. Problem. Define an equivalence relation \sim on $X = [0,1] \times [0,1]$ by $(x,y) \sim (v,w)$ if and only if both x-v and y-w are integers. Prove that X/\sim is homeomorphic to the torus $S^1 \times S^1$.
- 420. Problem. Let $p: X \to Y$ be a quotient map. Suppose that Y is connected, and for each $y \in Y$, the set $p^{-1}(\{y\})$ is connected. Prove that X is connected.

- 421. Theorem. $p: X \to Y$ be a quotient map. Let K be a subset of Y which is either open or closed. Let $g: p^{-1}(K) \to K$ denote the restriction of p to $p^{-1}(K)$. Then g is a quotient map.
- 422. Problem. Define an equivalence relation \sim on a topological space X by $x \sim y$ if and only if x and y lie in the same component of X. Prove that each component of X/\sim consists of a single point.
- 423. Problem. Let $p_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ denote the projection onto the first coordinate. Let

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0\} \cup \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = 0\}.$$

- Let $g: A \to \mathbb{R}$ denote the restriction of p_1 to A. Is g continuous? Is g an open map? Is g a closed map? Is g a quotient map?
- 424. Problem. Give an example of an equivalence relation on \mathbb{R} such that the corresponding quotient space is not Hausdorff.