
THE ABSENCE OF A PATTERN AND THEOCCURRENCES OF ANOTHERMIKL�OS B�ONAAbstrat. Following a question of J. Cooper, we study the expetednumber of ourrenes of a given permutation pattern q in permutationsthat avoid another given pattern r. In some ases, we �nd the patternthat ours least often, (resp. most often) in all r-avoiding permutations.We also prove a few exat enumeration formulae, some of whih aresurprising.
1. IntrodutionLet q = q1q2 : : : qk be a permutation in the symmetri group Sk. We saythat the permutation p = p1p2 : : : pn 2 Sn ontains a q-pattern if and onlyif there is a subsequene pi1pi2 : : : pik of p whose elements are in the samerelative order as those in q, that is,pit < piu if and only if qt < quwhenever 1 � t; u � k. If p does not ontain q, then we say that p avoidsq. For example, 41523 ontains exatly two ourrenes of the pattern 132,namely 152 and 153, while 34512 avoids 132. See Chapter 14 of [1℄ for anintrodution to pattern avoiding permutations, and Chapters 4 and 5 of [2℄for a somewhat more detailed treatment. A reent olletion of researhartiles an be found in [5℄.It is straightforward to ompute, using the linear property of expetation,that the average number of q-patterns in a randomly seleted permutationof length n is 1k!�nk�, where k is the length of q.Joshua Cooper [4℄ has raised the following interesting family of questions.Let r be a given permutation pattern. What an be said about the averagenumber of ourrenes of q in a randomly seleted r-avoiding permutation?In this paper, we study this family of questions in the ase when r =132. We prove the perhaps surprising result that among patterns of a �xedlength k, it is the inreasing pattern 12 � � � k that ours least often and it isthe dereasing pattern k(k � 1) � � � 1 that ours most often in a randomlyseleted 132-avoiding permutation. While pattern avoiding permutations ingeneral has been a very popular topi in the last �fteen years, this paperjoins a rather short list of artiles ([3℄ is an example) in whih expetationsof the number of ourrenes of a pattern are omputed.1



2 M. B�ONA2. PreliminariesThe struture of 132-avoiding permutations is well understood. If p =p1p2 � � � pn is suh a permutation, and pi = n, then pt > pu must hold for allpairs (t; u) satisfying t < i < u. In other words, all entries on the left of theentry n must be larger than all entries of the right of n. Indeed, if this doesnot happen, then ptnpu is a 132-pattern. This property is so entral to thework arried out in this paper that we illustrate it by Figure 2.
n

Figure 1. In a 132-avoiding permutation, all entries preed-ing the maximal entry are larger than entries following themaximal entry.Therefore, if Cn denotes the number of 132-avoiding permutations oflength n, then the numbers Cn satisfy the reurrene relation(1) Cn = nXi=1 Ci�1Cn�i;with C0 = 1. Hene the numbers Cn are idential to the famous Catalannumbers Cn = �2nn �=(n + 1). See Chapter 6 of Enumerative Combinatoris[6℄ for a wealth of information on Catalan numbers.It follows from the strutural property desribed in the �rst paragraph ofthis setion that a 132-avoiding permutation either ends in its largest entry,or it is deomposable, that is, it an be ut into two parts so that everyentry that preedes that ut is larger than every entry that follows that ut.Indeed, if the maximal entry n is not in the rightmost position, then one anut the permutation immediately after n to obtain suh a ut. Note thatthere may be additional ways to ut the same permutation. (We mentionthat some authors use a di�erent de�nition of deomposable permutations,



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 3one that ould be alled the dual of this one, but the present de�nition suitsthe purposes of this paper better.)Example 1. The permutation 76834512 is deomposable. One possible utis 768j34512, and another one is 768345j12.This relatively simple struture of 132-avoiding permutations enables usto give an exhaustive list of the ways in whih a 132-avoiding permutationan ontain a given pattern.Fat 1. If the 132-avoiding permutation p of length n ontains a opy Q ofthe pattern q of length k, then one of the following holds. (Note that q itselfmust be 132-avoiding; otherwise p learly avoids q.)(1) If q is not deomposable, that is, if q ends in its largest entry, then(a) either all of Q must be on the left of n,(b) or all of Q must be on the right of n,() or Q must end in n.For instane, if q = 123, then in p = 678952134, the subsequene678 preedes n = 9, the subsequene 679 ends in 9, and the subse-quene 134 follows 9.(2) If q is deomposable, that is, when q does not end in its largest entry,and q does not start with its largest entry, then(a) either all of Q is on the left of n,(b) or all of Q is on the right of n,() or the part of Q that preedes a given ut is on the left of n andthe part of Q the follows that ut is on the right of n,(d) or the part of Q preeding k is on the left of n, the part of Qfollowing k is on the right of n, and the maximal entry k of Qoinides with n.For instane, if q = 231, then in p = 786923451, the subsequene786 preedes 9, the subsequene 241 follows 9, the subsequene 785has its entries 7 and 8 before 9 and its entry 5 after 9 (orrespondingto the ut 23j1), and the subsequene 895 starts before 9, uses 9,and ends after 9.(3) If q is deomposable and q starts with its largest entry k, then(a) either all of Q is on the left of n,(b) or all of Q is on the right of n,() or the part of Q that preedes a given ut is on the left of n andthe part of Q that follows that ut is on the right of n, or(d) Q starts with n, and the rest of Q is on the right of n.3. Inreasing PatternsBefore proving that among all patterns of length k, it is the inreasingpattern 12 � � � k that ours least often in 132-avoiding permutations, weprove a few general fats about the total number of inreasing patterns inthese permutations.



4 M. B�ONA3.1. A formula for inreasing patterns. Let an;k be the total numberof 12 � � � k-patterns in all Cn permutations of length n that avoid 132. Sofor instane, a2;1 = 4, a3;1 = 15, and a2;2 = 1.Our goal in this subsetion is to provide an expliit formula for the gen-erating funtion Ak(x) = Pn an;kxn. We will use the well-known (see forinstane Chapter 14 of [1℄) expliit formula for the generating funtion ofthe Catalan numbers,C(x) =Xn�0Cnxn = 1�p1� 4x2x :We will prove the following theorem.Theorem 1. We have(2)A1(x) =Xn�1nCnxn =Xn�1�2nn �xn �Xn�1Cnxn = 1p1� 4x � 1�p1� 4x2x :Furthermore, for all positive integers k � 2, we haveAk(x) = A1(x)� xC(x)1� 2xC(x)�k�1 = A1(x)� 12p1� 4x � 12�k�1(3) = A1(x)F k�1(x):Proof. For k = 1, the laim is obvious, sine an inreasing subsequene oflength one is just an entry of a permutation.For larger k, an inreasing subsequene of length k is an indeomposablepattern. Hene the ways in whih it an our in the 132-avoiding per-mutation p are listed in Case (1) of Fat 1. This leads to the reurrenerelations an;k = 2 nXi=1 ai�1;kCn�i + nXi=1 ai�1;k�1Cn�i;or in terms of generating funtions,Ak(x) = 2xAk(x)C(x) + xAk�1(x)C(x)(4) = Ak�1(x) xC(x)1� 2xC(x) ;(5)and our laim follows by indution on k. �Note that in partiular, (3) implies that for 1 � k < l we have(6) Ak(x)Al(x) = Ak+1(x)Al�1(x):3.2. Why the Inreasing Pattern is Minimal. For a given pattern q,let tn(q) denote the number of all ourrenes of the pattern q in all 132-avoiding permutations of length n. So, in partiular, if q is the inreasingpattern 12 � � � k, then tn(q) = an;k.



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 5The main result of this setion is the following theorem, whih showsthat no pattern of a given length ours less often in the set of 132-avoidingpermutations than the inreasing pattern of that length.Theorem 2. Let q be any pattern of length k. Then for all positive integersn, we have tq(n) � an;k.Before proving the theorem, we need to introdue some simple mahineryto simplify notation.De�nition 1. Let G(x) =Pn�0 gnxn and H(x) =Pn�0 hnxn be two powerseries. We say that G(x) � H(x) if gn � hn for all n � 0.Proposition 1. Let G(x), H(x) and W (x) be three power series with non-negative real oeÆients so that G(x) � H(x) holds. ThenG(x)W (x) � H(x)W (x):Proof. The oeÆient of xn in H(x)W (x)�G(x)W (x) isnXi=0(hi � gi)wn�i;whih is a sum of non-negative real numbers, and is hene non-negative. �We an now return to the proof of Theorem 2.Proof of Theorem 2. We prove the statement by indution on k. For k = 1,the statement is obvious.Now let us assume that the statement is true for all positive integers lessthan k, and prove it for k. We distinguish three ases. Eah of these aseswill be handled by analyzing reurrene relations, whih may sometimesseem somewhat umbersome. Therefore, at the beginning of eah ase, wewill give an intuitive desription of that ase.In a permutation p = p1p2 � � � pn, we say that i is a desent if pi > pi+1.Otherwise, we say that i is an asent.An overview of the ases is as follows. First, we treat patterns ending intheir largest entry. Then we treat patterns that ontain only one desent,say in position j. Finally, we treat all remaining patterns, omparing thepatterns whose �rst desent is in position j to the pattern whose only desentis in position j.See Figure 3.2 for an illustration.Case 1 When q ends in its largest entry k. Let q0 be the pattern obtainedfrom q by removing the largest entry k from the end of q. We thenshow that q is more frequent than 12 � � � k by showing that q anbe ontained in a 132-avoiding permutation in the same ways as12 � � � k, and then using the indution hypothesis. In other words,the di�erene between an;k and tn(q) is aused by whatever happensbefore the last position of these patterns.



6 M. B�ONA

Figure 2. Three types of patterns that we ompare.The possible ways in whih q an our in a 132-avoiding permu-tation p are listed in Case (1) of Fat 1. Therefore, we have thereurrene relationtn(q) = 2 nXi=1 ti�1(q)Cn�i + nXi=1 ti�1(q0)Cn�i;leading to the generating funtion identitiesTq(x) = 2xC(x)Tq(x) + xC(x)Tq0(x);(7) Tq(x) = Tq0(x) xC(x)1 � 2xC(x) :Comparing formulae (4) and (7), we see that Tq(x) is obtained fromTq0(x) by the same operation as Ak(x) is obtained from Ak�1(x),namely by a multipliation by the power series F (x) = xC(x)1�2xC(x) . As[xn℄Tq0(x) = tn(q0) � an;k�1 = [xn℄Ak�1(x)by our indution hypothesis, and F (x) = Pn�1 �2n�1n�1 �xn has non-negative oeÆients, our laim is immediate by Proposition 1.Case 2 Let us now onsider the ase in whih q does not end in its largestentry k, and the only desent of q is in the position in whih k ours.We will subsequently see that all remaining ases will easily redueto this one. Let us say that k is in the jth position in q, with j < k.That is, q = qk;j = (k�j+1)(k�j+2) � � � k123(k�j). For instane,q7;3 = 5671234. We will show that(8) tn(qk;j) � tn(12 � � � k) = an;k:The main idea is the following. The pattern qk;j looks very similarto the inreasing pattern, hene the ways in whih qk;j an be on-tained in a 132-avoiding permutation are also similar to the ways inwhih the inreasing pattern an. So the numbers tn(qk;j) and an;k



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 7satisfy very similar reurrene relations, and where they di�er, theydi�er in the way we predited.Subase 2.1 Let us assume �rst that j 6= 1, that is, that k is not in the�rst position in qk;j. As qk;j is deomposable by a ut afterthe jth position, the ways in whih qk;j an be ontained in a132-avoiding permutation are desribed in Case (2) of Fat 1.That list leads to the reurrene relationtn(qk;j) = 2 nXi=1 Ci�1tn�i(qk;j) + nXi=1 ai�1;jan�i;k�j(9) + nXi=1 ai�1;j�1an�i;k�j;and heneTqk;j (x) = 2xC(x)Tqk;j (x) + xAj(x)Ak�j(x) + xAj�1(x)Ak�j(x);(10) Tqk;j (x) = xAk�j(x)(Aj(x) +Aj�1(x))1� 2xC(x) :We need to show that Tqk;j (x) � Ak(x). Comparing formulae(3) and (10), the preeding inequality is equivalent toxAk�j(x)(Aj(x) +Aj�1(x))1� 2xC(x) � A1(x)F (x)k�1;or(11) x1� 2xC(x)A1(x)2(F (x)k�3 + F (x)k�2) � A1(x)F (x)k�1:Inequality (11) will be proved if we an show that(12) x1� 2xC(x)A1(x)(1 + F (x)) � F (x)2:Indeed, (12) implies (11) by Proposition 1, hoosing W (x) =F k�3(x). On the other hand, (12) is equivalent tox2(1� 4x)3=2 + x2(1 � 4x) � 14(1 � 4x) + 14 � 14(1� 4x) � 12p1� 4x + 14 ;x2(1 � 4x)3=2 + x� 12(1 � 4x) + 12p1� 4x � 0:The oeÆient of xn on the left-hand side is 0 if n = 0, n = 1,or n = 2, and is bn = �2n�3n�2 �(2n � 1) � 3 � 22n�3 + �2n�1n�1 � ifn � 3. If we replae n by n+ 1, the negative summand in theabove expression of bn, that is, 3 �22n�3, grows fourfold, whereasa routine omputation shows that the sum of the two positiveterms grows 4n2+14n+6n2+3n+2 -fold. This fration is larger than 4 forall n � 3, showing that bn � 0 for all n, and our laim is proved.



8 M. B�ONASubase 2.2 If j = 1, then a minor modi�ation is neessary sine if a opyof q ontains n, then it has to start with n. Hene formula (9)beomestn(qk;1) = 2 nXi=1 Ci�1tn�i(qk;1) + nXi=1 ai�1;1an�i;k�1+ nXi=1 Ci�1an�i;k�1:So only the last sum is di�erent from what it was in (9). Thisleads to the generating funtion identitiesTqk;1(x) = 2xC(x)Tqk;1(x) + xAk�1(x)(A1(x) + C(x));(13) Tqk;1(x) = xAk�1(x)(A1(x) + C(x))1� 2xC(x) :Comparing formulae (4) and (13), the inequalityAk(x) � Tqk;1(x)is now proved by Proposition 1, sine C(x) � A1(x) + C(x).Case 3 Finally, there is the ase when k is in the jth position of q for somej < k, but j is not the only desent of q. We laim that then opiesof q our even more frequently than opies of qk;j, roughly beauseeven in segments where qk;j is inreasing, q is not.That is, we will prove that(14) tn(qk;j) � tn(q):This, together with (8) will omplete the proof of Theorem 2.As q is deomposable by a ut after its jth position, the waysin whih q an be ontained in a 132-avoiding permutation are de-sribed in Case (2) of Fat 1. Let q<1> denote the pattern formedby the �rst j entries of q, and let q<2> be the pattern formed by theremaining k � j entries of q. Then we have the reurrene relationtn(q) � 2 nXi=1 Ci�1tn�i(q)+ nXi=1 ti�1(q<1>)tn�i(q<2>)+ nXi=1 ti�1(q<10>)tn�i(q<2>):Here q<10> is the pattern obtained from q<1> by removing its last(and also largest) entry. Note that tn(q) is at least as large as theright-hand side, and not neessarily equal to it. That is beause,unlike qk;j, the pattern q may be deomposable by other uts, inaddition to the ut after its jth entry. The existene of suh utswould add extra summands to the right-hand side.The last displayed inequality leads to the generating funtion in-equalitiesTq(x) � 2Tq(x)xC(x) + xTq<1>(x)Tq<2>(x) + xTq<10>(x)Tq<2>(x);Tq(x)(1� 2xC(x)) � xTq1(x)Tq2(x) + xTq<10>(x)Tq<2>(x):



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 9Note that as 1=(1 � 2xC(x)) = 1=p1� 4x =Pn�0 �2nn �xn has non-negative oeÆients, the last displayed inequality remains true if wemultiply both sides by 1=(1� 2xC(x)). This leads to the inequality(15) Tq(x) � xTq<2>(x)(Tq<1> + Tq<10>(x))1� 2xC(x) :We an now ompare formulae (10) and (15). We see that by ourindution hypothesis, eah fator on the right-hand side of (15) isat least as large as the orresponding fator on the right-hand sideof (10). That is, xTq<2>(x) � xAk�j(x), sine q<2> is a patternof length k � j, and Tq<1> + Tq<10>(x) � Ak(x) + Ak�1(x) by asummand-wise omparison. Hene, by Proposition 1, we have thatTq(x) � Tqk;j (x).We have onsidered all ases, and proved our laim in eah of them, henethe proof of Theorem 2 is omplete. �4. Dereasing PatternsIn this setion we prove that the dereasing pattern k(k � 1) � � � 21 o-urs more frequently in 132-avoiding permutations than any other patternof length k. The struture of the proof will be very similar to that of theminimality of the inreasing pattern, but there will be more tehnial diÆ-ulties.4.1. General fats about dereasing patterns. Let dn;k denote thenumber of dereasing subsequenes of length k in all 132-avoiding permuta-tions of length n. Then we havedn;1 = an;1 = nCn = nn+ 1�2nn �:For larger values of k, onsider the set of all Cn permutations of length nthat avoid 132. In that set, for every 1 � j � k � 1, there arenXi=1 di�1;jdn�i;k�jopies of k(k � 1) � � � 1 in whih the �rst j entries are on the left of n,and the last k � j entries are on the right of n. (The index i denotes theposition of the entry n in a permutation of length n.) In addition, there arePni=1Ci�1dn;k�1 opies of k(k� 1) � � � 1 that start with the entry n. Finally,there are the 2Pni=1Ci�1dn�i;k opies of k(k�1) � � � 1 that are either entirelyon the left of n, or entirely on the right of n. This leads to the reurrenerelation(16) dn;k = k�1Xj=1 nXi=1 di�1;jdn�i;k�j + nXi=1 Ci�1dn;k�1 + 2 nXi=1 Ci�1dn�i;k



10 M. B�ONAand the generating funtion identitiesDk(x) = 2xC(x)Dk(x) + xC(x)Dk�1(x) + k�1Xj=1 xDj(x)Dk�j(x);(17) Dk(x) = xC(x)Dk�1(x) +Pk�1j=1 xDj(x)Dk�j(x)1� 2xC(x) :The following orollary provides an estimate for the \growth" of the powerseries Dk(x). It is worth omparing this result with Theorem 1.Corollary 1. We have(18) D2(x) = xD1(x)(1� 4x) ;and(19) Dk(x) � xDk�1(x)(1� 4x)for k � 3.Proof. The �rst displayed identity (the speial ase of k = 2) immediatelyfollows from (17) if we reall that 1� 2xC(x) = p1� 4x and that D1(x) +C(x) =Pn�0 �2nn �xn = 1p1�4x .The general formula (19) follows from (17) if we remove all summandsfrom the right-hand side exept for xC(x)Dk�1(x) and xD1(x)Dk�1, (wean do this sine all the removed terms have non-negative oeÆients), andthen again, we reall that D1(x) + C(x) = 1p1�4x . �The following lemma is a natural ounterpart of its muh simpler analogue(6). It shows that the sequene of power series D1(x);D2(x); � � � is log-onvex in a ertain sense.Lemma 1. For all positive integers 2 � a � b we haveDa(x)Db(x) � Da�1(x)Db+1(x):Proof. Indution on a+ b. The smallest value of a+ b for whih the state-ment is not trivial is 4. The non-trivial statement then is that D2(x)2 �D1(x)D3(x). By (18), this is equivalent to D1(x)2 x2(1�4x)2 � D1(x)D3(x). Inorder to prove the latter, it suÆes to show thatD1(x) x2(1 � 4x)2 � D3(x);and that is immediate by (19).Now let us assume that the statement holds for a+ b = m� 1 and proveit for a+ b = m. By (17), it suÆes to show thatDa(x)C(x)Db�1(x) + b�1Xj=1Da(x)Dj(x)Db�j(x) �



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 11� Da�1C(x)Db(x) + bXj=1Da�1(x)Dj(x)Db+1�j(x):Note that the right-hand side has one more summand than the left-handside. Now we arry out a series of pairwise omparisons. First, for the twoterms preeding the summation signs, we have that Da(x)C(x)Db�1(x) �Da�1(x)C(x)Db(x) sine C(x) has non-negative oeÆients, and by our in-dution hypothesis, Da(x)Db�1(x) � Da�1(x)Db(x). For the terms after thesummation signs, for j < a, we have thatDa(x)Dj(x)Db�j(x) � Da�1(x)Dj(x)Db+1�j(x)sine our indution hypothesis implies thatDa(x)Db�j(x) � Da�1(x)Db+1�j(x):The indution hypothesis applies sine a+ b� j < a+ b.For a � j � b� 1, we laim thatDa(x)Dj(x)Db�j(x) � Da�1(x)Dj+1(x)Db�j(x):(That is, we skip one summand, and we ompare the jth summand of theleft-hand side to the (j+1)st summand to the right-hand side.) Indeed, ourindution hypothesis implies thatDa(x)Dj(x) � Da�1(x)Dj+1(x):The indution hypothesis applies sine a+ j < a+ b.Finally, we point out that eah summand of the left-hand side was inje-tively assoiated to a weakly larger summand of the right-hand side. Thisproves our laim. �4.2. Why the dereasing pattern is maximal. Now we are in a positionto state and prove the main result of this setion.Theorem 3. Let q be a pattern of length k. Then the inequalitytn(q) � dn;kholds.Proof. We prove the statement by indution on k and n. We know that thestatement holds for k = 1 and it is routine to verify it for k = 2. Let us nowassume that it is true for all patterns shorter than k. Let us further assumethat for patterns of length k, the statement holds for all permutations shorterthan n. (The initial ases of n < k are obvious.) Let us now prove that thestatement hold for permutations of length n, and patterns of length k.Again, our proof proeeds by ases. We �rst handle patterns that startwith their largest entry, then patterns whih ontain only one asent, inposition j. Finally, we over the remaining ases, omparing patterns whose�rst asent is in position j to the pattern whose only asent is in position j.See Figure 4.2 for an illustration of some of these ases.



12 M. B�ONA
Figure 3. Three kinds of patterns we ompare.Case 1 Let us �rst onsider the ase when q starts with its largest entryk. In this ase, simply use the fat that the pattern obtained fromq by removing its �rst entry ours less often than the dereasingpattern k(k� 1) � � � 21, and it is deomposable by no more uts thank(k � 1) � � � 21.In this ase, q is deomposable sine it an be ut right after its�rst entry. Let us say that q is deomposable with v distint uts,and let q1;f and q1;b denote the patterns before and after the �rstut, let q2;f and q2;b denote the patterns before and after the seondut, and so on, up to qv;f and qv;b for the patterns on the two sidesof the last ut. (The letters f and b stand for \front" and \bak".)Note that the total length of qj;f and qj;b is always k for every j,and that jq1;f j = 1 and jq1;bj = k � 1.Then we have the reurrene relation(20)tn(q) = vXj=1 nXi=1 ti�1(qj;f )tn�i(qj;b) + nXi=1 Ci�1tn�i(q1;b) + 2 nXi=1 Ci�1tn�i(q):It is now straightforward to ompare dn;k and tn(q) by omparingthe orresponding summands of reurrene relations (16) and (20).Let us �rst ompare the two double sums. In those sums, j indexesthe uts of the respetive patterns. As the dereasing pattern oflength k has k � 1 uts, j ranges from 1 to k � 1 in (16). In (20),j ranges from 1 to v, where v � k � 1 is the number of uts thatq has. So the �rst double sum has more terms. We also laim thateven the terms that the seond double sum does have are smallerthan the orresponding terms in the �rst double sum.Indeed, if jqj;f j = y and jqj;bj = k� y, then ti�1(qj;f) � di�1;y andtn�i(qj;b) � dn�i;k�y by our indution hypothesis, soti�1(qj;f)tn�i(qj;b) � di�1;ydn�i;k�y:Comparing the seond sums of (16) and (20) is even simpler. Theirsummands agree in the term Ci�1, and by our indution hypothesis,we know that tn�i(q1;b) � dn�i;k�1. Finally, omparing the third



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 13sums of (16) and (20) we use the fat that n � i < n, so by ourindution hypothesis, tn�i(q) < dn�i;k.Case 2 When q has only one asent and q does not start with its largestentry k. Just as in the previous setion, this is the heart of theproof. The remaining ases will easily redue to this one. Let qk;hbe the pattern of length k that avoids 132 and has only one asent,in position h. As q does not start in its largest entry k, this meansthat k must be the (h+ 1)st entry of q. That is,qk;h = (k � 1) � � � (k � h)k(k � h� 1) � � � 321:For instane q5;2 = 43521.The diÆulty of this ase is that there is a way in whih qk;h anbe ontained in a 132-avoiding permutation in whih k(k � 1) � � � 21annot, namely by having h entries on the left of n and k � h � 1entries on the right of n. As we will see, the ways in whih thedereasing pattern an be ontained in suh a permutation and qk;hannot are more prevalent, but that is not obvious. We will needLemma 1 to prove that fat.The struture of qk;h is somewhat similar to that of the dereasingpattern. That is, qk;h an be ut after eah entry starting with k (inposition h+1). Cutting immediately after position j (with j � h+1)will result in the two patterns qj;h and the dereasing pattern oflength k � j. This leads to the reurrene relation(21)tn(qk;h) = k�1Xj=h+1 nXi=1 ti�1(qj;h)dn�i;k�j+ nXi=1 di�1;hdn�i;k�h�1+2 nXi=1 Ci�1tn�i(qk;h):We an arry out a pairwise omparison of orresponding sums informulae (16) and (21). This is easiest for the third sums in thosetwo formulae: indeed, as n� i < n, our indution hypothesis impliesthat tn�i(qk;h) � dn�i;k for all k, i, and h, so the third sum appearingin (16) is larger than the third sum appearing in (21).As far as the double sums are onerned, for j = h + 1; h +2; � � � ; k�1, our indution hypothesis implies that ti�1(qj;h) � di�1;j.Therefore, eah term of the double sum of (21) is at most as largeas the orresponding term of (16).Therefore, the laim tn(qk;h) � dn;k will be proved if we an showthat the remaining sum in (21) is less than the remaining sums in(16), that is, thatnXi=1 di�1;hdn�i;k�h�1 � hXj=1 nXi=1 dj;i�1dn�i;k�j + nXi=1 Ci�1dn�i;k�1:



14 M. B�ONAWe show the stronger statement that the above inequality remainstrue even if we remove all summands from the double sum in whihj 6= 1. (Note that as k is not in the �rst position of q, we know thath�1 � 1, so this will leave a non-empty set of summands.) In otherwords, we laim thatnXi=1 di�1;hdn�i;k�h�1 � nXi=1 di�1;1dn�i;k�1 + nXi=1 Ci�1dn;k�1:This is equivalent to the generating funtion inequalitiesxDh(x)Dk�h�1(x) � xD1(x)Dk�1(x) + xC(x)Dk�1(x):Dh(x)Dk�h�1(x) � Dk�1(x)(1 � 4x)�1=2:By Lemma 1, we know that Dh(x)Dk�h�1(x) � D1(x)Dk�2(x), soit suÆes to prove thatD1(x)Dk�2(x) � Dk�1(x)(1 � 4x)�1=2:By Corollary 1, we know that x1�4xDk�2(x) � Dk�1(x), so our laimwill be proved if we an show thatD1(x) � x(1� 4x)3=2 :The last displayed inequality holds sine [xn℄D1(x) = nn+1�2nn � whereas[xn℄ x(1�4x)3=2 = (2n � 1)�2n�2n�1 �. A routine omputation shows thatthe latter is larger as soon as 2 < n+ 1, or 1 < n.(1) Finally, we onsider the ase when q has more than one asent, andq does not start with its maximal entry. Let us assume that themaximal entry k of q is in the hth position. We will show that thentn(q) � tn(qk;h). The main idea behind the proof is that qk;h isdeomposable at every plae where q is, and after deomposition, itsparts are lose to the dereasing pattern.Let us indutively assume that we know the statement tn(q) �tn(qk;h) for all patterns shorter than k.The set of positions after whih q an be ut is a subset of theset of positions after whih qk;h an be ut. Just as in Case (1), letus say that q is deomposable with v distint uts, and let q1;f andq1;b denote the patterns before and after the �rst ut, let q2;f andq2;b denote the patterns before and after the seond ut, and so on,up to qv;f and qv;b for the patterns on the two sides of the last ut.Note that jq1;f j = h and jq1;bj = k � h.Then, similarly to Case (1), we have the reurrene relation(22)tn(q) = vXj=1 nXi=1 ti�1(qj;f )tn�i(qj;b)+ nXi=1 ti�1(q1;f 0)tn�i(q1;b)+2 nXi=1 Ci�1tn�i(q);



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 15where q1;f 0 is the pattern q1;f with its last (and largest) entry re-moved.The inequality tn(q) � tn(qk;h) is now obvious by pairwise om-paring the three summands in (21) and (22), and using the indutionhypotheses. (In partiular, when omparing the �rst summands, weuse the fat that if jqj;hj = jqj;f j, then ti�1(qj;h) � ti�1(qj;h) by theindution hypothesis made in this ase. Reall that we assumed thatfor patterns q shorter than k, it is true that tn(q) � tn(qjqj;h), whereh is the �rst asent of q.) �5. Asymptoti EnumerationTheorem 1 provides an expliit formula for A2(x). From that formula, itis routine to dedue that(23) an;2 = 22n�1 � 14�2n+ 2n+ 1 �� n2n+ 1�2nn �for n � 1.Similarly, an expliit formula for D2(x) an be obtained by setting k = 2in (17). That is,(24)D2(x) = xC(x)D1(x) + xD1(x)D1(x)1� 2xC(x) = x(1� 4x)3=2� 12(1� 4x)+ 12p1� 4x:This yields(25) dn;2 = �2n� 1n� 1 �(n+ 1)� 22n�1for n = 1.Comparing formulae (23) and (25) and using Stirling's formula, we seethat in 132-avoiding permutatations of length n, there are pn times asmany inversions as non-inversions.6. Further DiretionsA simple analysis of the proofs of Theorems 2 and 3 shows that theinequalities a(n; k) � tn(q) � d(n; k) are sharp if n is large enough omparedto k.We have seen that, if we onsider 132-avoiding permutations, then amongall patterns of length k, the inreasing pattern is the least likely to ourand the dereasing pattern is the most likely to our. This suggests thefollowing natural question.Question 1. Let r be any pattern, and let tr;q(n) be the number of all opiesof q in all r-avoiding permutations of length n. Let us assume that amongall patterns q of length k, it is the inreasing pattern that minimizes tr;q(n)for all n.



16 M. B�ONAIs it then true that among all patterns q of length k, it is the dereasingpattern that maximizes tr;q(n)?Another diretion of researh is the following.Question 2. Let q1 and q2 be two patterns of the same length, and assumethat for some positive integer N , the inequalitytr;q1(N) < tr;q2(N)holds. Is it then true that tr;q1(n) < tr;q2(n)for all n > N?In other words, is it true that the relation between the frequeny of q1and q2 in r-avoiding permutations depends only on r, q1 and q2, or does itdepend on n as well?Lemma 1 and formula 6 show interesting ombinatorial properties of thepower series D1(x);D2(x); � � � and A1(x); A2(x); � � � . These properties areeasy to express in terms of ombinatorial objets, without power series.However, is there a ombinatorial proof for them?Referenes[1℄ M. B�ona, A Walk Through Combinatoris, 2nd edition, World Sienti�, 2006.[2℄ M. B�ona, Combinatoris of Permutations, CRC Press, 2004.[3℄ M. B�ona, Where the monotone pattern (mostly) rules, Disrete Math. 308 (2008),no. 23, 5782{5788.[4℄ J. Cooper, Combinatorial Problems I like, internet resoure,http://www.math.s.edu/%7Eooper/ombprob.html[5℄ N. Rusku, S. Linton, V. Vatter, editors, Patterns in Permutations, Cambridge Uni-versity Press, 2010.[6℄ R. Stanley, Enumerative Combinatoris, Volume 2, Cambridge University Press, 1997.M. B�ona, Department of Mathematis, University of Florida, 358 Little Hall, PO Box118105, Gainesville, FL 32611{8105 (USA)


