
THE ABSENCE OF A PATTERN AND THEOCCURRENCES OF ANOTHERMIKL�OS B�ONAAbstra
t. Following a question of J. Cooper, we study the expe
tednumber of o

urren
es of a given permutation pattern q in permutationsthat avoid another given pattern r. In some 
ases, we �nd the patternthat o

urs least often, (resp. most often) in all r-avoiding permutations.We also prove a few exa
t enumeration formulae, some of whi
h aresurprising.
1. Introdu
tionLet q = q1q2 : : : qk be a permutation in the symmetri
 group Sk. We saythat the permutation p = p1p2 : : : pn 2 Sn 
ontains a q-pattern if and onlyif there is a subsequen
e pi1pi2 : : : pik of p whose elements are in the samerelative order as those in q, that is,pit < piu if and only if qt < quwhenever 1 � t; u � k. If p does not 
ontain q, then we say that p avoidsq. For example, 41523 
ontains exa
tly two o

urren
es of the pattern 132,namely 152 and 153, while 34512 avoids 132. See Chapter 14 of [1℄ for anintrodu
tion to pattern avoiding permutations, and Chapters 4 and 5 of [2℄for a somewhat more detailed treatment. A re
ent 
olle
tion of resear
harti
les 
an be found in [5℄.It is straightforward to 
ompute, using the linear property of expe
tation,that the average number of q-patterns in a randomly sele
ted permutationof length n is 1k!�nk�, where k is the length of q.Joshua Cooper [4℄ has raised the following interesting family of questions.Let r be a given permutation pattern. What 
an be said about the averagenumber of o

urren
es of q in a randomly sele
ted r-avoiding permutation?In this paper, we study this family of questions in the 
ase when r =132. We prove the perhaps surprising result that among patterns of a �xedlength k, it is the in
reasing pattern 12 � � � k that o

urs least often and it isthe de
reasing pattern k(k � 1) � � � 1 that o

urs most often in a randomlysele
ted 132-avoiding permutation. While pattern avoiding permutations ingeneral has been a very popular topi
 in the last �fteen years, this paperjoins a rather short list of arti
les ([3℄ is an example) in whi
h expe
tationsof the number of o

urren
es of a pattern are 
omputed.1



2 M. B�ONA2. PreliminariesThe stru
ture of 132-avoiding permutations is well understood. If p =p1p2 � � � pn is su
h a permutation, and pi = n, then pt > pu must hold for allpairs (t; u) satisfying t < i < u. In other words, all entries on the left of theentry n must be larger than all entries of the right of n. Indeed, if this doesnot happen, then ptnpu is a 132-pattern. This property is so 
entral to thework 
arried out in this paper that we illustrate it by Figure 2.
n

Figure 1. In a 132-avoiding permutation, all entries pre
ed-ing the maximal entry are larger than entries following themaximal entry.Therefore, if Cn denotes the number of 132-avoiding permutations oflength n, then the numbers Cn satisfy the re
urren
e relation(1) Cn = nXi=1 Ci�1Cn�i;with C0 = 1. Hen
e the numbers Cn are identi
al to the famous Catalannumbers Cn = �2nn �=(n + 1). See Chapter 6 of Enumerative Combinatori
s[6℄ for a wealth of information on Catalan numbers.It follows from the stru
tural property des
ribed in the �rst paragraph ofthis se
tion that a 132-avoiding permutation either ends in its largest entry,or it is de
omposable, that is, it 
an be 
ut into two parts so that everyentry that pre
edes that 
ut is larger than every entry that follows that 
ut.Indeed, if the maximal entry n is not in the rightmost position, then one 
an
ut the permutation immediately after n to obtain su
h a 
ut. Note thatthere may be additional ways to 
ut the same permutation. (We mentionthat some authors use a di�erent de�nition of de
omposable permutations,



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 3one that 
ould be 
alled the dual of this one, but the present de�nition suitsthe purposes of this paper better.)Example 1. The permutation 76834512 is de
omposable. One possible 
utis 768j34512, and another one is 768345j12.This relatively simple stru
ture of 132-avoiding permutations enables usto give an exhaustive list of the ways in whi
h a 132-avoiding permutation
an 
ontain a given pattern.Fa
t 1. If the 132-avoiding permutation p of length n 
ontains a 
opy Q ofthe pattern q of length k, then one of the following holds. (Note that q itselfmust be 132-avoiding; otherwise p 
learly avoids q.)(1) If q is not de
omposable, that is, if q ends in its largest entry, then(a) either all of Q must be on the left of n,(b) or all of Q must be on the right of n,(
) or Q must end in n.For instan
e, if q = 123, then in p = 678952134, the subsequen
e678 pre
edes n = 9, the subsequen
e 679 ends in 9, and the subse-quen
e 134 follows 9.(2) If q is de
omposable, that is, when q does not end in its largest entry,and q does not start with its largest entry, then(a) either all of Q is on the left of n,(b) or all of Q is on the right of n,(
) or the part of Q that pre
edes a given 
ut is on the left of n andthe part of Q the follows that 
ut is on the right of n,(d) or the part of Q pre
eding k is on the left of n, the part of Qfollowing k is on the right of n, and the maximal entry k of Q
oin
ides with n.For instan
e, if q = 231, then in p = 786923451, the subsequen
e786 pre
edes 9, the subsequen
e 241 follows 9, the subsequen
e 785has its entries 7 and 8 before 9 and its entry 5 after 9 (
orrespondingto the 
ut 23j1), and the subsequen
e 895 starts before 9, uses 9,and ends after 9.(3) If q is de
omposable and q starts with its largest entry k, then(a) either all of Q is on the left of n,(b) or all of Q is on the right of n,(
) or the part of Q that pre
edes a given 
ut is on the left of n andthe part of Q that follows that 
ut is on the right of n, or(d) Q starts with n, and the rest of Q is on the right of n.3. In
reasing PatternsBefore proving that among all patterns of length k, it is the in
reasingpattern 12 � � � k that o

urs least often in 132-avoiding permutations, weprove a few general fa
ts about the total number of in
reasing patterns inthese permutations.



4 M. B�ONA3.1. A formula for in
reasing patterns. Let an;k be the total numberof 12 � � � k-patterns in all Cn permutations of length n that avoid 132. Sofor instan
e, a2;1 = 4, a3;1 = 15, and a2;2 = 1.Our goal in this subse
tion is to provide an expli
it formula for the gen-erating fun
tion Ak(x) = Pn an;kxn. We will use the well-known (see forinstan
e Chapter 14 of [1℄) expli
it formula for the generating fun
tion ofthe Catalan numbers,C(x) =Xn�0Cnxn = 1�p1� 4x2x :We will prove the following theorem.Theorem 1. We have(2)A1(x) =Xn�1nCnxn =Xn�1�2nn �xn �Xn�1Cnxn = 1p1� 4x � 1�p1� 4x2x :Furthermore, for all positive integers k � 2, we haveAk(x) = A1(x)� xC(x)1� 2xC(x)�k�1 = A1(x)� 12p1� 4x � 12�k�1(3) = A1(x)F k�1(x):Proof. For k = 1, the 
laim is obvious, sin
e an in
reasing subsequen
e oflength one is just an entry of a permutation.For larger k, an in
reasing subsequen
e of length k is an inde
omposablepattern. Hen
e the ways in whi
h it 
an o

ur in the 132-avoiding per-mutation p are listed in Case (1) of Fa
t 1. This leads to the re
urren
erelations an;k = 2 nXi=1 ai�1;kCn�i + nXi=1 ai�1;k�1Cn�i;or in terms of generating fun
tions,Ak(x) = 2xAk(x)C(x) + xAk�1(x)C(x)(4) = Ak�1(x) xC(x)1� 2xC(x) ;(5)and our 
laim follows by indu
tion on k. �Note that in parti
ular, (3) implies that for 1 � k < l we have(6) Ak(x)Al(x) = Ak+1(x)Al�1(x):3.2. Why the In
reasing Pattern is Minimal. For a given pattern q,let tn(q) denote the number of all o

urren
es of the pattern q in all 132-avoiding permutations of length n. So, in parti
ular, if q is the in
reasingpattern 12 � � � k, then tn(q) = an;k.



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 5The main result of this se
tion is the following theorem, whi
h showsthat no pattern of a given length o

urs less often in the set of 132-avoidingpermutations than the in
reasing pattern of that length.Theorem 2. Let q be any pattern of length k. Then for all positive integersn, we have tq(n) � an;k.Before proving the theorem, we need to introdu
e some simple ma
hineryto simplify notation.De�nition 1. Let G(x) =Pn�0 gnxn and H(x) =Pn�0 hnxn be two powerseries. We say that G(x) � H(x) if gn � hn for all n � 0.Proposition 1. Let G(x), H(x) and W (x) be three power series with non-negative real 
oeÆ
ients so that G(x) � H(x) holds. ThenG(x)W (x) � H(x)W (x):Proof. The 
oeÆ
ient of xn in H(x)W (x)�G(x)W (x) isnXi=0(hi � gi)wn�i;whi
h is a sum of non-negative real numbers, and is hen
e non-negative. �We 
an now return to the proof of Theorem 2.Proof of Theorem 2. We prove the statement by indu
tion on k. For k = 1,the statement is obvious.Now let us assume that the statement is true for all positive integers lessthan k, and prove it for k. We distinguish three 
ases. Ea
h of these 
aseswill be handled by analyzing re
urren
e relations, whi
h may sometimesseem somewhat 
umbersome. Therefore, at the beginning of ea
h 
ase, wewill give an intuitive des
ription of that 
ase.In a permutation p = p1p2 � � � pn, we say that i is a des
ent if pi > pi+1.Otherwise, we say that i is an as
ent.An overview of the 
ases is as follows. First, we treat patterns ending intheir largest entry. Then we treat patterns that 
ontain only one des
ent,say in position j. Finally, we treat all remaining patterns, 
omparing thepatterns whose �rst des
ent is in position j to the pattern whose only des
entis in position j.See Figure 3.2 for an illustration.Case 1 When q ends in its largest entry k. Let q0 be the pattern obtainedfrom q by removing the largest entry k from the end of q. We thenshow that q is more frequent than 12 � � � k by showing that q 
anbe 
ontained in a 132-avoiding permutation in the same ways as12 � � � k, and then using the indu
tion hypothesis. In other words,the di�eren
e between an;k and tn(q) is 
aused by whatever happensbefore the last position of these patterns.



6 M. B�ONA

Figure 2. Three types of patterns that we 
ompare.The possible ways in whi
h q 
an o

ur in a 132-avoiding permu-tation p are listed in Case (1) of Fa
t 1. Therefore, we have there
urren
e relationtn(q) = 2 nXi=1 ti�1(q)Cn�i + nXi=1 ti�1(q0)Cn�i;leading to the generating fun
tion identitiesTq(x) = 2xC(x)Tq(x) + xC(x)Tq0(x);(7) Tq(x) = Tq0(x) xC(x)1 � 2xC(x) :Comparing formulae (4) and (7), we see that Tq(x) is obtained fromTq0(x) by the same operation as Ak(x) is obtained from Ak�1(x),namely by a multipli
ation by the power series F (x) = xC(x)1�2xC(x) . As[xn℄Tq0(x) = tn(q0) � an;k�1 = [xn℄Ak�1(x)by our indu
tion hypothesis, and F (x) = Pn�1 �2n�1n�1 �xn has non-negative 
oeÆ
ients, our 
laim is immediate by Proposition 1.Case 2 Let us now 
onsider the 
ase in whi
h q does not end in its largestentry k, and the only des
ent of q is in the position in whi
h k o

urs.We will subsequently see that all remaining 
ases will easily redu
eto this one. Let us say that k is in the jth position in q, with j < k.That is, q = qk;j = (k�j+1)(k�j+2) � � � k123(k�j). For instan
e,q7;3 = 5671234. We will show that(8) tn(qk;j) � tn(12 � � � k) = an;k:The main idea is the following. The pattern qk;j looks very similarto the in
reasing pattern, hen
e the ways in whi
h qk;j 
an be 
on-tained in a 132-avoiding permutation are also similar to the ways inwhi
h the in
reasing pattern 
an. So the numbers tn(qk;j) and an;k



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 7satisfy very similar re
urren
e relations, and where they di�er, theydi�er in the way we predi
ted.Sub
ase 2.1 Let us assume �rst that j 6= 1, that is, that k is not in the�rst position in qk;j. As qk;j is de
omposable by a 
ut afterthe jth position, the ways in whi
h qk;j 
an be 
ontained in a132-avoiding permutation are des
ribed in Case (2) of Fa
t 1.That list leads to the re
urren
e relationtn(qk;j) = 2 nXi=1 Ci�1tn�i(qk;j) + nXi=1 ai�1;jan�i;k�j(9) + nXi=1 ai�1;j�1an�i;k�j;and hen
eTqk;j (x) = 2xC(x)Tqk;j (x) + xAj(x)Ak�j(x) + xAj�1(x)Ak�j(x);(10) Tqk;j (x) = xAk�j(x)(Aj(x) +Aj�1(x))1� 2xC(x) :We need to show that Tqk;j (x) � Ak(x). Comparing formulae(3) and (10), the pre
eding inequality is equivalent toxAk�j(x)(Aj(x) +Aj�1(x))1� 2xC(x) � A1(x)F (x)k�1;or(11) x1� 2xC(x)A1(x)2(F (x)k�3 + F (x)k�2) � A1(x)F (x)k�1:Inequality (11) will be proved if we 
an show that(12) x1� 2xC(x)A1(x)(1 + F (x)) � F (x)2:Indeed, (12) implies (11) by Proposition 1, 
hoosing W (x) =F k�3(x). On the other hand, (12) is equivalent tox2(1� 4x)3=2 + x2(1 � 4x) � 14(1 � 4x) + 14 � 14(1� 4x) � 12p1� 4x + 14 ;x2(1 � 4x)3=2 + x� 12(1 � 4x) + 12p1� 4x � 0:The 
oeÆ
ient of xn on the left-hand side is 0 if n = 0, n = 1,or n = 2, and is bn = �2n�3n�2 �(2n � 1) � 3 � 22n�3 + �2n�1n�1 � ifn � 3. If we repla
e n by n+ 1, the negative summand in theabove expression of bn, that is, 3 �22n�3, grows fourfold, whereasa routine 
omputation shows that the sum of the two positiveterms grows 4n2+14n+6n2+3n+2 -fold. This fra
tion is larger than 4 forall n � 3, showing that bn � 0 for all n, and our 
laim is proved.



8 M. B�ONASub
ase 2.2 If j = 1, then a minor modi�
ation is ne
essary sin
e if a 
opyof q 
ontains n, then it has to start with n. Hen
e formula (9)be
omestn(qk;1) = 2 nXi=1 Ci�1tn�i(qk;1) + nXi=1 ai�1;1an�i;k�1+ nXi=1 Ci�1an�i;k�1:So only the last sum is di�erent from what it was in (9). Thisleads to the generating fun
tion identitiesTqk;1(x) = 2xC(x)Tqk;1(x) + xAk�1(x)(A1(x) + C(x));(13) Tqk;1(x) = xAk�1(x)(A1(x) + C(x))1� 2xC(x) :Comparing formulae (4) and (13), the inequalityAk(x) � Tqk;1(x)is now proved by Proposition 1, sin
e C(x) � A1(x) + C(x).Case 3 Finally, there is the 
ase when k is in the jth position of q for somej < k, but j is not the only des
ent of q. We 
laim that then 
opiesof q o

ur even more frequently than 
opies of qk;j, roughly be
auseeven in segments where qk;j is in
reasing, q is not.That is, we will prove that(14) tn(qk;j) � tn(q):This, together with (8) will 
omplete the proof of Theorem 2.As q is de
omposable by a 
ut after its jth position, the waysin whi
h q 
an be 
ontained in a 132-avoiding permutation are de-s
ribed in Case (2) of Fa
t 1. Let q<1> denote the pattern formedby the �rst j entries of q, and let q<2> be the pattern formed by theremaining k � j entries of q. Then we have the re
urren
e relationtn(q) � 2 nXi=1 Ci�1tn�i(q)+ nXi=1 ti�1(q<1>)tn�i(q<2>)+ nXi=1 ti�1(q<10>)tn�i(q<2>):Here q<10> is the pattern obtained from q<1> by removing its last(and also largest) entry. Note that tn(q) is at least as large as theright-hand side, and not ne
essarily equal to it. That is be
ause,unlike qk;j, the pattern q may be de
omposable by other 
uts, inaddition to the 
ut after its jth entry. The existen
e of su
h 
utswould add extra summands to the right-hand side.The last displayed inequality leads to the generating fun
tion in-equalitiesTq(x) � 2Tq(x)xC(x) + xTq<1>(x)Tq<2>(x) + xTq<10>(x)Tq<2>(x);Tq(x)(1� 2xC(x)) � xTq1(x)Tq2(x) + xTq<10>(x)Tq<2>(x):



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 9Note that as 1=(1 � 2xC(x)) = 1=p1� 4x =Pn�0 �2nn �xn has non-negative 
oeÆ
ients, the last displayed inequality remains true if wemultiply both sides by 1=(1� 2xC(x)). This leads to the inequality(15) Tq(x) � xTq<2>(x)(Tq<1> + Tq<10>(x))1� 2xC(x) :We 
an now 
ompare formulae (10) and (15). We see that by ourindu
tion hypothesis, ea
h fa
tor on the right-hand side of (15) isat least as large as the 
orresponding fa
tor on the right-hand sideof (10). That is, xTq<2>(x) � xAk�j(x), sin
e q<2> is a patternof length k � j, and Tq<1> + Tq<10>(x) � Ak(x) + Ak�1(x) by asummand-wise 
omparison. Hen
e, by Proposition 1, we have thatTq(x) � Tqk;j (x).We have 
onsidered all 
ases, and proved our 
laim in ea
h of them, hen
ethe proof of Theorem 2 is 
omplete. �4. De
reasing PatternsIn this se
tion we prove that the de
reasing pattern k(k � 1) � � � 21 o
-
urs more frequently in 132-avoiding permutations than any other patternof length k. The stru
ture of the proof will be very similar to that of theminimality of the in
reasing pattern, but there will be more te
hni
al diÆ-
ulties.4.1. General fa
ts about de
reasing patterns. Let dn;k denote thenumber of de
reasing subsequen
es of length k in all 132-avoiding permuta-tions of length n. Then we havedn;1 = an;1 = nCn = nn+ 1�2nn �:For larger values of k, 
onsider the set of all Cn permutations of length nthat avoid 132. In that set, for every 1 � j � k � 1, there arenXi=1 di�1;jdn�i;k�j
opies of k(k � 1) � � � 1 in whi
h the �rst j entries are on the left of n,and the last k � j entries are on the right of n. (The index i denotes theposition of the entry n in a permutation of length n.) In addition, there arePni=1Ci�1dn;k�1 
opies of k(k� 1) � � � 1 that start with the entry n. Finally,there are the 2Pni=1Ci�1dn�i;k 
opies of k(k�1) � � � 1 that are either entirelyon the left of n, or entirely on the right of n. This leads to the re
urren
erelation(16) dn;k = k�1Xj=1 nXi=1 di�1;jdn�i;k�j + nXi=1 Ci�1dn;k�1 + 2 nXi=1 Ci�1dn�i;k



10 M. B�ONAand the generating fun
tion identitiesDk(x) = 2xC(x)Dk(x) + xC(x)Dk�1(x) + k�1Xj=1 xDj(x)Dk�j(x);(17) Dk(x) = xC(x)Dk�1(x) +Pk�1j=1 xDj(x)Dk�j(x)1� 2xC(x) :The following 
orollary provides an estimate for the \growth" of the powerseries Dk(x). It is worth 
omparing this result with Theorem 1.Corollary 1. We have(18) D2(x) = xD1(x)(1� 4x) ;and(19) Dk(x) � xDk�1(x)(1� 4x)for k � 3.Proof. The �rst displayed identity (the spe
ial 
ase of k = 2) immediatelyfollows from (17) if we re
all that 1� 2xC(x) = p1� 4x and that D1(x) +C(x) =Pn�0 �2nn �xn = 1p1�4x .The general formula (19) follows from (17) if we remove all summandsfrom the right-hand side ex
ept for xC(x)Dk�1(x) and xD1(x)Dk�1, (we
an do this sin
e all the removed terms have non-negative 
oeÆ
ients), andthen again, we re
all that D1(x) + C(x) = 1p1�4x . �The following lemma is a natural 
ounterpart of its mu
h simpler analogue(6). It shows that the sequen
e of power series D1(x);D2(x); � � � is log-
onvex in a 
ertain sense.Lemma 1. For all positive integers 2 � a � b we haveDa(x)Db(x) � Da�1(x)Db+1(x):Proof. Indu
tion on a+ b. The smallest value of a+ b for whi
h the state-ment is not trivial is 4. The non-trivial statement then is that D2(x)2 �D1(x)D3(x). By (18), this is equivalent to D1(x)2 x2(1�4x)2 � D1(x)D3(x). Inorder to prove the latter, it suÆ
es to show thatD1(x) x2(1 � 4x)2 � D3(x);and that is immediate by (19).Now let us assume that the statement holds for a+ b = m� 1 and proveit for a+ b = m. By (17), it suÆ
es to show thatDa(x)C(x)Db�1(x) + b�1Xj=1Da(x)Dj(x)Db�j(x) �



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 11� Da�1C(x)Db(x) + bXj=1Da�1(x)Dj(x)Db+1�j(x):Note that the right-hand side has one more summand than the left-handside. Now we 
arry out a series of pairwise 
omparisons. First, for the twoterms pre
eding the summation signs, we have that Da(x)C(x)Db�1(x) �Da�1(x)C(x)Db(x) sin
e C(x) has non-negative 
oeÆ
ients, and by our in-du
tion hypothesis, Da(x)Db�1(x) � Da�1(x)Db(x). For the terms after thesummation signs, for j < a, we have thatDa(x)Dj(x)Db�j(x) � Da�1(x)Dj(x)Db+1�j(x)sin
e our indu
tion hypothesis implies thatDa(x)Db�j(x) � Da�1(x)Db+1�j(x):The indu
tion hypothesis applies sin
e a+ b� j < a+ b.For a � j � b� 1, we 
laim thatDa(x)Dj(x)Db�j(x) � Da�1(x)Dj+1(x)Db�j(x):(That is, we skip one summand, and we 
ompare the jth summand of theleft-hand side to the (j+1)st summand to the right-hand side.) Indeed, ourindu
tion hypothesis implies thatDa(x)Dj(x) � Da�1(x)Dj+1(x):The indu
tion hypothesis applies sin
e a+ j < a+ b.Finally, we point out that ea
h summand of the left-hand side was inje
-tively asso
iated to a weakly larger summand of the right-hand side. Thisproves our 
laim. �4.2. Why the de
reasing pattern is maximal. Now we are in a positionto state and prove the main result of this se
tion.Theorem 3. Let q be a pattern of length k. Then the inequalitytn(q) � dn;kholds.Proof. We prove the statement by indu
tion on k and n. We know that thestatement holds for k = 1 and it is routine to verify it for k = 2. Let us nowassume that it is true for all patterns shorter than k. Let us further assumethat for patterns of length k, the statement holds for all permutations shorterthan n. (The initial 
ases of n < k are obvious.) Let us now prove that thestatement hold for permutations of length n, and patterns of length k.Again, our proof pro
eeds by 
ases. We �rst handle patterns that startwith their largest entry, then patterns whi
h 
ontain only one as
ent, inposition j. Finally, we 
over the remaining 
ases, 
omparing patterns whose�rst as
ent is in position j to the pattern whose only as
ent is in position j.See Figure 4.2 for an illustration of some of these 
ases.
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Figure 3. Three kinds of patterns we 
ompare.Case 1 Let us �rst 
onsider the 
ase when q starts with its largest entryk. In this 
ase, simply use the fa
t that the pattern obtained fromq by removing its �rst entry o

urs less often than the de
reasingpattern k(k� 1) � � � 21, and it is de
omposable by no more 
uts thank(k � 1) � � � 21.In this 
ase, q is de
omposable sin
e it 
an be 
ut right after its�rst entry. Let us say that q is de
omposable with v distin
t 
uts,and let q1;f and q1;b denote the patterns before and after the �rst
ut, let q2;f and q2;b denote the patterns before and after the se
ond
ut, and so on, up to qv;f and qv;b for the patterns on the two sidesof the last 
ut. (The letters f and b stand for \front" and \ba
k".)Note that the total length of qj;f and qj;b is always k for every j,and that jq1;f j = 1 and jq1;bj = k � 1.Then we have the re
urren
e relation(20)tn(q) = vXj=1 nXi=1 ti�1(qj;f )tn�i(qj;b) + nXi=1 Ci�1tn�i(q1;b) + 2 nXi=1 Ci�1tn�i(q):It is now straightforward to 
ompare dn;k and tn(q) by 
omparingthe 
orresponding summands of re
urren
e relations (16) and (20).Let us �rst 
ompare the two double sums. In those sums, j indexesthe 
uts of the respe
tive patterns. As the de
reasing pattern oflength k has k � 1 
uts, j ranges from 1 to k � 1 in (16). In (20),j ranges from 1 to v, where v � k � 1 is the number of 
uts thatq has. So the �rst double sum has more terms. We also 
laim thateven the terms that the se
ond double sum does have are smallerthan the 
orresponding terms in the �rst double sum.Indeed, if jqj;f j = y and jqj;bj = k� y, then ti�1(qj;f) � di�1;y andtn�i(qj;b) � dn�i;k�y by our indu
tion hypothesis, soti�1(qj;f)tn�i(qj;b) � di�1;ydn�i;k�y:Comparing the se
ond sums of (16) and (20) is even simpler. Theirsummands agree in the term Ci�1, and by our indu
tion hypothesis,we know that tn�i(q1;b) � dn�i;k�1. Finally, 
omparing the third



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 13sums of (16) and (20) we use the fa
t that n � i < n, so by ourindu
tion hypothesis, tn�i(q) < dn�i;k.Case 2 When q has only one as
ent and q does not start with its largestentry k. Just as in the previous se
tion, this is the heart of theproof. The remaining 
ases will easily redu
e to this one. Let qk;hbe the pattern of length k that avoids 132 and has only one as
ent,in position h. As q does not start in its largest entry k, this meansthat k must be the (h+ 1)st entry of q. That is,qk;h = (k � 1) � � � (k � h)k(k � h� 1) � � � 321:For instan
e q5;2 = 43521.The diÆ
ulty of this 
ase is that there is a way in whi
h qk;h 
anbe 
ontained in a 132-avoiding permutation in whi
h k(k � 1) � � � 21
annot, namely by having h entries on the left of n and k � h � 1entries on the right of n. As we will see, the ways in whi
h thede
reasing pattern 
an be 
ontained in su
h a permutation and qk;h
annot are more prevalent, but that is not obvious. We will needLemma 1 to prove that fa
t.The stru
ture of qk;h is somewhat similar to that of the de
reasingpattern. That is, qk;h 
an be 
ut after ea
h entry starting with k (inposition h+1). Cutting immediately after position j (with j � h+1)will result in the two patterns qj;h and the de
reasing pattern oflength k � j. This leads to the re
urren
e relation(21)tn(qk;h) = k�1Xj=h+1 nXi=1 ti�1(qj;h)dn�i;k�j+ nXi=1 di�1;hdn�i;k�h�1+2 nXi=1 Ci�1tn�i(qk;h):We 
an 
arry out a pairwise 
omparison of 
orresponding sums informulae (16) and (21). This is easiest for the third sums in thosetwo formulae: indeed, as n� i < n, our indu
tion hypothesis impliesthat tn�i(qk;h) � dn�i;k for all k, i, and h, so the third sum appearingin (16) is larger than the third sum appearing in (21).As far as the double sums are 
on
erned, for j = h + 1; h +2; � � � ; k�1, our indu
tion hypothesis implies that ti�1(qj;h) � di�1;j.Therefore, ea
h term of the double sum of (21) is at most as largeas the 
orresponding term of (16).Therefore, the 
laim tn(qk;h) � dn;k will be proved if we 
an showthat the remaining sum in (21) is less than the remaining sums in(16), that is, thatnXi=1 di�1;hdn�i;k�h�1 � hXj=1 nXi=1 dj;i�1dn�i;k�j + nXi=1 Ci�1dn�i;k�1:



14 M. B�ONAWe show the stronger statement that the above inequality remainstrue even if we remove all summands from the double sum in whi
hj 6= 1. (Note that as k is not in the �rst position of q, we know thath�1 � 1, so this will leave a non-empty set of summands.) In otherwords, we 
laim thatnXi=1 di�1;hdn�i;k�h�1 � nXi=1 di�1;1dn�i;k�1 + nXi=1 Ci�1dn;k�1:This is equivalent to the generating fun
tion inequalitiesxDh(x)Dk�h�1(x) � xD1(x)Dk�1(x) + xC(x)Dk�1(x):Dh(x)Dk�h�1(x) � Dk�1(x)(1 � 4x)�1=2:By Lemma 1, we know that Dh(x)Dk�h�1(x) � D1(x)Dk�2(x), soit suÆ
es to prove thatD1(x)Dk�2(x) � Dk�1(x)(1 � 4x)�1=2:By Corollary 1, we know that x1�4xDk�2(x) � Dk�1(x), so our 
laimwill be proved if we 
an show thatD1(x) � x(1� 4x)3=2 :The last displayed inequality holds sin
e [xn℄D1(x) = nn+1�2nn � whereas[xn℄ x(1�4x)3=2 = (2n � 1)�2n�2n�1 �. A routine 
omputation shows thatthe latter is larger as soon as 2 < n+ 1, or 1 < n.(1) Finally, we 
onsider the 
ase when q has more than one as
ent, andq does not start with its maximal entry. Let us assume that themaximal entry k of q is in the hth position. We will show that thentn(q) � tn(qk;h). The main idea behind the proof is that qk;h isde
omposable at every pla
e where q is, and after de
omposition, itsparts are 
lose to the de
reasing pattern.Let us indu
tively assume that we know the statement tn(q) �tn(qk;h) for all patterns shorter than k.The set of positions after whi
h q 
an be 
ut is a subset of theset of positions after whi
h qk;h 
an be 
ut. Just as in Case (1), letus say that q is de
omposable with v distin
t 
uts, and let q1;f andq1;b denote the patterns before and after the �rst 
ut, let q2;f andq2;b denote the patterns before and after the se
ond 
ut, and so on,up to qv;f and qv;b for the patterns on the two sides of the last 
ut.Note that jq1;f j = h and jq1;bj = k � h.Then, similarly to Case (1), we have the re
urren
e relation(22)tn(q) = vXj=1 nXi=1 ti�1(qj;f )tn�i(qj;b)+ nXi=1 ti�1(q1;f 0)tn�i(q1;b)+2 nXi=1 Ci�1tn�i(q);



THE ABSENCE OF A PATTERN AND THE OCCURRENCES OF ANOTHER 15where q1;f 0 is the pattern q1;f with its last (and largest) entry re-moved.The inequality tn(q) � tn(qk;h) is now obvious by pairwise 
om-paring the three summands in (21) and (22), and using the indu
tionhypotheses. (In parti
ular, when 
omparing the �rst summands, weuse the fa
t that if jqj;hj = jqj;f j, then ti�1(qj;h) � ti�1(qj;h) by theindu
tion hypothesis made in this 
ase. Re
all that we assumed thatfor patterns q shorter than k, it is true that tn(q) � tn(qjqj;h), whereh is the �rst as
ent of q.) �5. Asymptoti
 EnumerationTheorem 1 provides an expli
it formula for A2(x). From that formula, itis routine to dedu
e that(23) an;2 = 22n�1 � 14�2n+ 2n+ 1 �� n2n+ 1�2nn �for n � 1.Similarly, an expli
it formula for D2(x) 
an be obtained by setting k = 2in (17). That is,(24)D2(x) = xC(x)D1(x) + xD1(x)D1(x)1� 2xC(x) = x(1� 4x)3=2� 12(1� 4x)+ 12p1� 4x:This yields(25) dn;2 = �2n� 1n� 1 �(n+ 1)� 22n�1for n = 1.Comparing formulae (23) and (25) and using Stirling's formula, we seethat in 132-avoiding permutatations of length n, there are 
pn times asmany inversions as non-inversions.6. Further Dire
tionsA simple analysis of the proofs of Theorems 2 and 3 shows that theinequalities a(n; k) � tn(q) � d(n; k) are sharp if n is large enough 
omparedto k.We have seen that, if we 
onsider 132-avoiding permutations, then amongall patterns of length k, the in
reasing pattern is the least likely to o

urand the de
reasing pattern is the most likely to o

ur. This suggests thefollowing natural question.Question 1. Let r be any pattern, and let tr;q(n) be the number of all 
opiesof q in all r-avoiding permutations of length n. Let us assume that amongall patterns q of length k, it is the in
reasing pattern that minimizes tr;q(n)for all n.



16 M. B�ONAIs it then true that among all patterns q of length k, it is the de
reasingpattern that maximizes tr;q(n)?Another dire
tion of resear
h is the following.Question 2. Let q1 and q2 be two patterns of the same length, and assumethat for some positive integer N , the inequalitytr;q1(N) < tr;q2(N)holds. Is it then true that tr;q1(n) < tr;q2(n)for all n > N?In other words, is it true that the relation between the frequen
y of q1and q2 in r-avoiding permutations depends only on r, q1 and q2, or does itdepend on n as well?Lemma 1 and formula 6 show interesting 
ombinatorial properties of thepower series D1(x);D2(x); � � � and A1(x); A2(x); � � � . These properties areeasy to express in terms of 
ombinatorial obje
ts, without power series.However, is there a 
ombinatorial proof for them?Referen
es[1℄ M. B�ona, A Walk Through Combinatori
s, 2nd edition, World S
ienti�
, 2006.[2℄ M. B�ona, Combinatori
s of Permutations, CRC Press, 2004.[3℄ M. B�ona, Where the monotone pattern (mostly) rules, Dis
rete Math. 308 (2008),no. 23, 5782{5788.[4℄ J. Cooper, Combinatorial Problems I like, internet resour
e,http://www.math.s
.edu/%7E
ooper/
ombprob.html[5℄ N. Rusku
, S. Linton, V. Vatter, editors, Patterns in Permutations, Cambridge Uni-versity Press, 2010.[6℄ R. Stanley, Enumerative Combinatori
s, Volume 2, Cambridge University Press, 1997.M. B�ona, Department of Mathemati
s, University of Florida, 358 Little Hall, PO Box118105, Gainesville, FL 32611{8105 (USA)


