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Abstract. We prove that the number of 1324-avoiding permutations
of length n is less than (7 + 4

√
3)n. The novelty of our method is that

we injectively encode such permutations by a pair of words of length n
over a finite alphabet that avoid a given factor.

1. Introduction

1.1. Definitions and Open Questions. The theory of pattern avoiding
permutations has seen tremendous progress during the last two decades.
The key definition is the following. Let k ≤ n, let p = p1p2 · · · pn be a
permutation of length n, and let q = q1q2 · · · qk be a permutation of length
k. We say that p avoids q if there are no k indices i1 < i2 < · · · < ik so that
for all a and b, the inequality pia < pib holds if and only if the inequality
qa < qb holds. For instance, p = 2537164 avoids q = 1234 because p does
not contain an increasing subsequence of length four. See [3] for an overview
of the main results on pattern avoiding permutations.

The shortest pattern for which even some of the most basic questions are
open is q = 1324, a pattern that has been studied for at least 17 years.
For instance, there is no known exact formula for the number Sn(1324)
of permutations of length n (or, in what follows, n-permutations) avoiding

1324. Even the value of L(1324) = limn→∞
n
√
Sn(1324) is unknown, though

the limit is known to exist. Indeed, a spectacular result of Adam Marcus
and Gábor Tardos [7] shows that for all patterns q, there exists a constant
cq so that Sn(q) ≤ cnq for all n, and a short argument [2] then shows that

this implies the existence of L(q) = limn→∞
n
√
Sn(q). It is also known that

no pattern of length four is easier to avoid than the pattern 1324, that is,
for any pattern q of length 4, the inequality Sn(q) ≤ Sn(1324) holds. The
inequality is sharp unless q = 4231. See Chapter 4 of [3] for a treatment of
the series of results leading to these inequalities.

The best known upper bound for the numbers Sn(1324) was given in 2011
by Claesson, Jelinek and Steingŕımsson [5] who proved that for all positive
integers n, the inequality Sn(1324) < 16n holds. The best known lower
bound, Sn(1324) ≥ 9.47n, was given by five authors in [1] in 2005.

In this paper, we prove the inequality Sn(1324) < (7 + 4
√

3)n. The proof
introduces a refined version of a decomposition of 1324-avoiding permuta-
tions given in [5], encodes such permutations by two words over a 4-element
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alphabet, and then enumerates those words. As far as we know, this is the
first time that the combinatorics of words is used to find a good upper bound
for the number of permutations avoiding a single pattern.

1.2. Preliminaries. In this section, we present a few simple facts that are
well-known among researchers working in the area that will be necessary in
order to understand some of our proofs in the subsequent sections. Readers
familiar with the area may skip this section. Proofs that are not given here
can be found in [3].

Theorem 1.1. Let q be any pattern of length three. Then Sn(q) = Cn =(
2n
n

)
/(n+ 1), the nth Catalan number. In particular, Sn(q) < 4n.

An entry of a permutation is called a left-to-right minimum if it is smaller
than all entries on its left. Right-to-left maxima are defined analogously.
For instance, in p = 351624, the left-to-right minima are 3 and 1, while the
right-to-left maxima are 6 and 4. The following proposition was first proved
by Rodica Simion and Frank Schmidt in [8].

Proposition 1.2. A 132-avoiding permutation is completely determined by
the set of its left-to-right minima, and the set of indices that belong to entries
that are left-to-right minima.

Proof. By definition, left-to-right minima are always in decreasing order.
Furthermore, once the set and position of the left-to-right minima are given,
the order of elements that are not left-to-right minima is uniquely deter-
mined. To see this, fill the positions that belong to entries that are not
left-to-right minima one by one, going left to right. In each step, the small-
est remaining entry that is larger than the closest left-to-right minimum m
on the left of the position at hand must be placed. If we do not follow this
procedure and place the entry y instead of the smaller entry x, then the
132-pattern myx is formed. �

Example 1.3. In order to find the unique 132-avoiding permutation of
length 6 whose left-to-right minima are the entries 1, 3, and 4, and that has
left-to-right minima in the first, second and fifth positions, write the left-to-
right minima in the specified positions in decreasing order, to get 43 ∗ ∗1∗,
where the ∗ denote positions that are still empty. Then fill the empty slots
with the remaining entries, always placing the smallest entry that is larger
than the closest left-to-right minimum on the left. In this case, that means
first placing 5, then 6, then 2, to get 435612.

In an analogous way, each 213-avoiding permutation is determined by
the set of its right-to-left maxima, and the set of indices that belong to
right-to-left maxima. This is easy to see if we observe that the permutation
p = p1p2 · · · pn is 213-avoiding if and only if its reverse complement, that is,
the permutation (n+ 1− pn) (n+ 1− pn−1) · · · (n+ 1− p1) is 132-avoiding.
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In preparation to proving our main results, we announce the facts dis-
cussed in Proposition 1.2 and its dual, which is discussed in the paragraph
after Example 1.3 in a slightly different form.

Proposition 1.4. Let p = p1p2 · · · pn be a permutation of length n that
avoids 132. Let the ordered pairs of words (u(p), v(p)) of length n be defined
as follows. The ith letter of u(p) is A if pi is a left-to-right minimum in
p, and B otherwise. The ith letter of v(p) is A if the entry of value i is a
left-to-right minimum in p, and B otherwise.

Then the map r(p) = (u(p), v(p)) is injective.

Example 1.5. If p = 43512, then u(p) = AABAB and v(p) = ABAAB.

Proposition 1.4 is clearly equivalent to Proposition 1.2 since they both
state that a 132-avoiding permutation is completely determined by its set of
left-to-right minima, and the positions of those left-to-right minima in the
permutation.

We announce the corresponding statement for 213-avoiding permutations,
for future reference.

Proposition 1.6. Let p = p1p2 · · · pn be a permutation of length n that
avoids 213. Let the ordered pairs of words (x(p), y(p)) of length n be defined
as follows. The ith letter of x(p) is C if pi is not a right-to-left maximum
in p, and D otherwise. The ith letter of y(p) is C if the entry of value i is
not a right-to-left maximum in p, and D otherwise.

Then the map s(p) = (x(p), y(p)) is injective.

Example 1.7. If p = 35412, then x(p) = CDDCD, and y(p) = CDCDD.

2. Coloring entries

The starting point of our proof is the following decomposition of 1324-
avoiding permutations, given in [5].

Let p = p1p2 · · · pn be a 1324-avoiding permutation, and let us color each
entry of p red or blue as we move from left to right, according the following
rules.

(1) If coloring pi red would create a 132-pattern with all red entries,
then color pi blue, and

(2) if there already is a blue entry smaller than pi, then color pi blue;
(3) otherwise color pi red.

It is then proved in [5] that the red entries form a 132-avoiding permu-
tation and the blue entries form a 213-avoiding permutation. From this, it
is not difficult to prove that the number of 1324-avoiding n-permutations is
less than 16n. Indeed, there are at most 2n possibilities for the set of the
red entries (the blue entries being the remaining entries), and there are at
most 2n possibilities for the positions in which red entries are placed (the
blue entries then must be placed in the remaining positions). Once the set
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and positions of the k red entries are known, there are Ck < 4k possibil-
ities for their permutation, just as there are Cn−k < 4n−k possibilities for
the permutation of the blue entries, completing the proof of the inequality
Sn(1324) < 16n.

Remark 2.1. In [5], the coloring introduced above is used in a more general
context. However, in this paper we only study 1324-avoiding permutations.
It is worth pointing out that in this situation, rule (2) is actually extraneous.
That is, dropping rule (2) and keeping rules (1) and (3) leads to the very
same coloring as rules (1), (2), and (3) do. In order to see this, let p be a
1324-avoiding permutation. Let us start coloring the entries of p from left
to right as the rules (1), (2) and (3) specify. Let us assume that there is
at least one entry that gets colored blue only because of rule (2). In that
case, there is a leftmost entry with that property; let that entry be denoted
by x. Then, by the definition of x, there exists an entry y so that y < x,
the entry y is on the left of x, and y is blue. Furthermore, because x is the
leftmost entry that got colored blue only because of rule (2), the entry y got
colored blue because of rule (1). That means that there is a 132-pattern acy
in which a and c are red. Note that c < x is impossible, since that would
mean that acyx is a 1324-pattern. So y < x < c, and therefore, acx is a
132-pattern with its first two entries red. That means that x is colored blue
by rule (1), a contradiction.

3. Refining the coloring

In this section, we improve the upper bound on Sn(1324) by using a more
refined decomposition of 1324-avoiding permutations, which enables us to
carry out a more careful counting argument. Let us color each entry of
the 1324-avoiding permutation p = p1p2 · · · pn red or blue as in Section 2.
Furthermore, let us mark each entry of p with one of the letters A, B, C, or
D as follows.

(1) Mark each red entry that is a left-to-right minimum in the partial
permutation of red entries by A,

(2) mark each red entry that is not a left-to-right minimum in the partial
permutation of red entries by B,

(3) mark each blue entry that is not a right-to-left maximum in the
partial permutation of blue entries by C, and

(4) mark each blue entry that is a right-to-left maximum in the partial
permutation of blue entries by D.

Call entries marked by the letter X entries of type X. Let w(p) be the
n-letter word over the alphabet {A,B,C,D} defined above. In other words,
the ith letter of w(p) is the type of pi in p. Let z(p) be the n-letter word
over the alphabet {A,B,C,D} whose ith letter is the type of the entry of
value i in p.
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Remark 3.1. Note that the function f(p) = (w(p), z(p)) in fact applies
the map r of Proposition 1.4 to the string pred of red entries of p, and the
map s of Proposition 1.6 to the string pblue of blue entries of p. So given
f(p) = (w(p), z(p)), we can immediately recover r(pred) and s(pblue). Indeed,
r(pred) is the pair of subwords of w(p) and z(p) that consist of letters A and
B, whereas s(pblue) is the pair of subwords of w(p) and z(p) that consist of
letters C and D.

Conversely, if we are given r(pred) = (u(pred), v(pred)) and s(pblue) =
(x(pblue), y(pblue)), and we know in which positions of p the red entries are,
and entries of which value of p are red, we can recover f(p) as follows.
Shuffle the words u(pred) and x(pblue) so that letters A and B are in positions
that belong to red entries in p, and shuffle the words v(pred) and y(pblue) so
that letters A and B are in positions j for which the entry of value j is red
in p.

Example 3.2. Let p = 3612745. Then the subsequence of red entries of p
is 36127, the subsequence of blue entries of p is 45, so w(p) = ABABBCD,
while z(p) = ABACDBB.

The following lemma shows a property of w(p) that will enable us to
improve the upper bound on Sn(1324). Let us say that a word w has a
CB-factor if somewhere in w, a letter C is immediately followed by a letter
B.

Lemma 3.3. If p is 1324-avoiding, then w(p) has no CB-factor.

Proof. Let us assume that in p = p1p2 · · · pn, the entry pi is of type C, while
the entry pi+1 is of type B. That means that pi > pi+1, otherwise the fact
that pi is blue would force pi+1 to be blue. Furthermore, since pi is not a
right-to-left maximum, there is an entry d on the right of pi (and on the right
of pi+1) so that pi < d. Similarly, since pi+1 is not a left-to-right minimum,
there is an entry a on its left so that a < pi+1. However, then apipi+1d is a
1324-pattern, which is a contradiction. �

Lemma 3.4. If p is 1324-avoiding, then there is no entry i in p so that i
is of type C and i+ 1 is of type B.

Proof. Analogous to the proof of Lemma 3.3. If such a pair existed, i would
have to be on the right of i+ 1, since i is blue and i+ 1 is red. As i is not a
right-to-left maximum, there would be a larger entry d on its right. As i+ 1
is not a left-to-right minimum, there would be a smaller entry a on its left.
However, then a(i+ 1)id would be a 1324-pattern. �

Lemma 3.5. Let hn be the number of words of length n that consist of
letters A, B, C and D that have no CB-factors. Then we have

H(x) =
∑
n≥0

hnx
n =

1

1− 4x+ x2
.
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This implies

(1) hn =
3 + 2

√
3

6
·
(

2 +
√

3
)n

+
3− 2

√
3

6
·
(

2−
√

3
)n
.

Proof. (of Lemma 3.5) LetHn denote the set of all words of length n over the
alphabet {A,B,C,D} that contain no CB-factors. Using the notation from
the book Analytic Combinatorics by Philippe Flajolet and Robert Sedgewick
[6], we claim that if n ≥ 2, then

(2) Hn−1 ∗ {A,B,C,D} = Hn +Hn−2 ∗ CB.

Indeed, let us take a word that is an element of Hn−1, and append a letter
A, B, C or D to its end. The result is a word that is in Hn, except when the
addition of the new letter creates a CB-factor. In that case, that CB-factor
at the end of the word is preceded by a word that belongs to Hn−2.

Noting that h0 = 1 and h1 = 4, formula (2) leads to the functional
equation

4xH(x) + 1 = H(x) + x2H(x).

Expressing H(x), we obtain

H(x) =
1

1− 4x+ x2

as claimed. In order to find the exact formula for hn, we use partial fractions.
Note that α = 2 +

√
3 and β = 2−

√
3 are the roots of the denominator of

H(x), and also note that αβ = 1. Let us look for real numbers r and s so
that

H(x) =
r

1− αx
+

s

1− βx
holds for all real numbers x. Multiplying both sides by 1− 4x+ x2, we get
the identity

(3) 1 = r(1− βx) + s(1− αx).

As (3) must hold for all real numbers x, it has to hold in particular for
x = β = 1/α. That substitution reduces (3) to 1 = r(1− β2), yielding that

r =
1

1− β2
=

3 + 2
√

3

6
.

In a similar manner, substituting x = α = 1/β in (3) yields s = 3−2
√

3
6 .

Therefore,

H(x) =
3 + 2

√
3

6
· 1

1− αx
+

3− 2
√

3

6
· 1

1− βx

=
3 + 2

√
3

6
·
∑
n≥0

αnxn +
3− 2

√
3

6
·
∑
n≥0

βnxn,

and our claim is proved by equating coefficients of xn. �
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The following, simple but crucial lemma tells us that the ordered pair
(w(p), z(p)) completely determines the 1324-avoiding permutation p.

Lemma 3.6. Let Avn(1324) be the set of all 1324-avoiding n-permutations.
Then the map f : Avn(1324) → Hn × Hn, given by f(p) = (w(p), z(p)) is
injective.

Proof. Let (w, z) ∈ Hn ×Hn, and let us assume that f(p) = (w, z), that is,
that w(p) = w, and z(p) = z for some p ∈ Avn(1324).

Then w tells us for which indices i the entry pi will be of type A, namely
for the indices i for which the ith letter of w is A. Similary, w tells us the
indices j for which the entry pi is of type B, type C, or type D.

After this, we can use z to figure out which entries of p are of type A,
type B, type C or type D.

Now let wAB (resp. zAB) be the subword of w (resp. z) that consists of
all the letters A and B in w (resp. z). In other words, the pair (wAB, zAB)
contains all information about the red entries of p. It then follows from
Proposition 1.4 that there exists at most one 132-avoiding permutation p′

for which r(p′) = (wAB, zAB).
Define wCD and zCD in an analogous manner. Then Proposition 1.6

shows that there exists at most one 213-avoiding permutation p′′ for which
s(p′′) = (wCD, zCD).

It is now immediate from Remark 3.1 that f is injective. Indeed, if
f(p) = (w, z), then the red entries of p must form the unique permuta-
tion p′ for which r(p′) = (wAB, zAB), and the blue entries of p must form
the unique permutation p′′ for which s(p′′) = (wCD, zCD). Finally, as we said
in the second and third paragraphs of this proof, the pair (w, z) uniquely
determines the set and positions of red entries of p, and the set and positions
of blue entries of p. �

We are now ready to announce and prove the main enumeration result of
this paper.

Corollary 3.7. For all positive integers n, the inequality

Sn(1324) < h2
n−1 <

(
2 +
√

3
)2n

=
(

7 + 4
√

3
)n

holds.

Proof. The fact that Sn(1324) < h2
n is immediate from the injective property

of f that we have just proved in Lemma 3.6. In order to complete the
proof of the first inequality, note that the image of f consists of ordered
pairs (w(p), z(p)) in which both w(p) and z(p) starts with an A, since both
p1 and 1 are always red, and left-to-right minima within the string of red
entries (and even in all of p). The rest follows from formula (1), since in
that formula, the second summand is negative, and in the first summand,
the coefficient (3 + 2

√
3)/6 is smaller than the base (2 +

√
3). �
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