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Abstract. The subject of this paper is the cycle structure of the ran-
dom permutation σ of [N ], which is the product of k independent ran-
dom cycles of maximal length N . We use the character-based Fourier
transform to study the counts of cycles of σ by length and also the
distribution of the elements of the subset [`] among the cycles of σ.

1. Introduction

Enumeration of permutations of a set [N ] = {1, 2, . . . , N} according to
the numbers of cycles of various lengths has a long and glorious history.
The plentiful results are not infrequently cast in the probabilistic light, if
the assumption is made that a permutation is chosen uniformly at ran-
dom among all N ! permutations. The techniques vary widely, from bijec-
tive methods to multivariate generating functions to functional limit the-
orems, allowing to find solutions, exact or asymptotic, of rather delicate,
enumerative-probabilistic, problems. More recently there has been a grow-
ing interest in the probabilities regarding distribution of the elements of a
subset S ⊆ [N ] among the cycles of the random permutation. For instance,
we can determine the probability that each of the entries in S will be in a
different cycle, or that all entries of S will be in the same cycle, or that each
cycle of p will contain at least one entry of S. See Lovász [22] for results of
this kind.

The classic, and more recent, problems become much more difficult if,
instead of a uniformly random permutation, we consider a random permu-
tation which is a product of random maximal cycles. That is, our sample
space is now that of all ordered k-tuples (p1, p2, · · · , pk), where all pi are
maximal cycles of length N . One can investigate the random permutation
σ := p1 · · · pk under the assumption that p1, . . . , pk are maximal cycles, cho-
sen uniformly at random, and independently of each other, from all (N−1)!
such cycles. The problem to determine the probability that the permutation
σ has prescribed counts of cycles of all lengths is equivalent to a special case
of the problem to count all factorizations of σ belonging to a given conju-
gacy class into the product of k permutations each belonging to its own
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conjugacy class. There is a long, glorious history of research in this classic
area, starting with Hurwitz [16], who was motivated by deep connections
between factorizations and topological equivalence classes of functions on
associated Riemann surfaces; see Lando and Zvonkin [18] for the history of
the subject, and a relatively recent paper, Poulalhon and Schaeffer [25]. Still
when counting the products σ that do not fill a single conjugacy class, or
few such classes, that usage of the existing results on factorization is quite
problematic.

1.1. Motivation and recent results. Among the sources of our inspira-
tion are Zagier’s classic formula for the distribution of the number of cycles
in σ for k = 2, [34], and the more recent results by Stanley [29] and Bernardi
et al. [3], again for k = 2. For the problem in [34] the admissible products
of cycles form a union of too many conjugacy classes for invoking the fac-
torization results. In [3] a formula is proved for the probability that σ, the
product of two maximal cycles, separates the given disjoint subsets of [N ],
i.e. no two of those subsets are represented in the same cycle of σ. For this
problem the labels of elements in [N ] are at the core of counting, and the
set of admissible products is a union of subsets of conjugacy classes.

Beside their intrinsic interest, solutions of the mentioned problems may
lead to surprising applications. In [5], Bóna and Flynn used a result of
Stanley [29] concerning the special case S = {1, 2} and k = 2 to prove an
exact formula for the average number of block interchanges needed to sort a
permutation, a problem motivated by genome sorting. Equally interesting
are the methods that can be used, as they come from a wide array of areas
in mathematics, such as character theory, multivariate Gaussian integration,
bijective combinatorics and the summation techniques for hypergeometric
sums.

1.2. Overview: methods and results. In 1986 Harer and Zagier [15]
discovered a remarkable formula for the bivariate generating function of the
number of cycles in the product of a maximal cycle and a random, fixed-
point free, involution of [2n], thus solving a difficult problem of enumerat-
ing the chord diagrams by the genus of an associated surface. The proof
was based on evaluation of multidimensional Gaussian integrals. Soon af-
ter, Jackson [17], and later, Zagier, [34] found alternative proofs that used
characters of the symmetric group S2n. Recently the second author [24]
found a different, character-based proof. Its core consists of computing
and marginally inverting the Fourier transform of the underlying probabil-
ity measure on S2n. In the present paper, we use the techniques in [24], see
also an earlier paper by Chmutov and Pittel [7], to investigate the product
of k maximal cycles in SN . In order to make the discussion reasonably self-
contained, we will introduce the necessary definitions and facts from [24] in
Section 2.

We begin Section 3 with Lemma 3.1 that states an explicit formula for
the probability distribution of the number of cycles in σ, the product of k
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random, independent, maximal cycles in SN . Not surprisingly, the distribu-
tion is expressed through the Stirling numbers of first kind. The formulas
for the probability that σ is the identity permutation and for the probability
that σ is a maximal cycle obtained by Stanley in [28] are the special cases of
the identity in this Lemma. Our analysis also delivers a well-known formula
found by Zagier for the case k = 2. See Corollary 3.5 for this special case;
see the Appendix by Zagier in Lando and Zvonkin [18] for the original result
of Zagier. In Corollary 3.6, we also obtain a bivariate generating function
for the distribution of the number of cycles for the product of three cycles.
We conclude this section with a relatively compact, integral formula for the
probability that the product of two cycles belongs to a given conjugacy class.

Then, in Section 4, we turn to the following general question. Let pA(N,
`; k) be the probability that the number of elements of [`] = {1, 2, · · · , `}
in each cycle of σ comes from the set A ⊆ Z≥0. What can we say about
pA(N, `; k)?

To this end, for a general A, we first enumerate the admissible permuta-
tions by the cycle counts and then evaluate the sum of character values over
all admissible permutations for irreducible representations labeled by one-
hook Young diagrams. Then we consider the special case when A = Z>0, i.e.
when each cycle of σ contains at least one element of [`]. Using the inverse
Fourier transform, we find an alternating sum expression for this probability
with N − `+ 1 binomial-type summands. This result is proved in Theorem
4.2. For k = 2, this sum reduces to two notably simpler expressions, that
can be efficiently computed for moderate ` and moderate N−` respectively.

Next we investigate the case of A = {0, `}, that is, when all elements of `
are in the same cycle of σ. This computation is longer than its counterpart
in the previous case, and it leads to a general formula for pA(N, `; k), given
in Theorem 4.5, that is analogous to that for A = Z>0. Again, if k = 2, then
the formula shrinks to a pair of computationally efficient sums for moderate
` and moderate N − ` respectively. For ` = 2 and ` = 3, we recover the
results obtained by Stanley [29].

Having experimented with Maple, we feel confident that the residual sums
for k = 2 in either of the two cases do not have a more compact presentation.

After this, in Section 5, we turn to our most technical problem. We
consider disjoint subsets S1,S2, · · · ,St of [N ] such that |Sj | = `j ; define

` =
∑

j `j . Let p(N, ~̀; k) denote the probability that no cycle of σ contains
elements from more than one Sj , a property to which we refer by saying
that σ separates the sets S1,S2, · · · ,St. Bernardi et al. [3] found a striking

formula for p(N, ~̀; 2) that involved an alternating sum of ` − t + 1 terms.
Remarkably, the factor

∏
j `j ! aside, the rest of the formula depends on ` and

t only. In Lemma 5.1, we show that the separation probability continues to
have this latter property for all k ≥ 2, and find an alternating sum formula
with N−`+t+1 terms for this probability, which is computationally efficient
if t and N − ` are both bounded as N grows. Then, for k = 2, we are able to
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simplify this formula to one that is close in appearance, but is significantly
different from the formula in [3]. This formula is given in Theorem 5.5, and
it still contains a sum of ` − t + 1 summands, but the signs are no longer
alternating.

Finally, in Section 6, we consider the following question. Let us say that
the elements of [`] are blocked in a permutation s of [N ] if no two elements
of [`] are neighbors, and each element of [`] has a neighbor from [N ] \ [`].
Then, for a general k ≥ 2, we find a two-term formula for the probability
that σ blocks the elements of [`]. This formula is proved in Theorem 6.1.

While on occasion our proofs deliver the already known results, we hope
that the employed techniques can be used for a broader variety of problems
on cyclic structure of the products of random permutations.

In conclusion we should mention a recent paper [11] by Féray and Rattan.
Among other results, it was proved in [11] that the number of ways to write
a given permutation σ as the product of an n-cycle and a permutation
[(n − a) − cycle] ∪ ρ, depends only on the product of signs of σ and ρ
and the first (a− 1) multiplicities of cycle lengths in σ, thus generalizing a
theorem by Boccara [4]. Féray and Rattan also found a recurrence equation
for separation probabilities for the product of n-cycle and (n − a) cycle.
Their methods differ significantly from ours.

2. Preliminaries

A key observation is that the set of all maximal cycles forms a conjugacy
class in the symmetric group SN , a class with particularly simple character
values. We mention that permutations generated by a given conjugacy class
were studied for instance by Diaconis and Shahshahani [8], and, from a
more algebraic point of view, by Larsen and Shalev [19]. Some of that work
resulted in asymptotic formulas. However, the research in the present paper
is in the line of work of proving exact formulas in combinatorial enumeration,
like the mentioned results in [3, 27, 28, 29].

Let us start with the Fourier inversion formula for a general probability
measure P on SN :

(1) P (s) =
1

N !

∑
λ`N

fλ tr
(
ρλ(s−1)P̂ (ρλ)

)
; s ∈ SN .

(See Diaconis and Shahshahani [8] and Diaconis [9] for a lucid discussion
and applications of the Fourier transform for asymptotic analysis of the
random walks on the symmetric group SN and other simple groups.) Here
λ is a generic partition of the integer N , ρλ is the irreducible representation
of SN associated with λ, fλ = dim(ρλ), and P̂ (ρλ) is the fλ × fλ matrix-

valued Fourier transform of P (·) evaluated at ρλ, P̂ (ρλ) =
∑

s∈SN ρ
λ(s)P (s).

Let us evaluate the right-hand side of (1) for P = Pσ, the probability

measure on SN induced by σ =
∏k
j=1 σj , where σj is uniform on a con-

jugacy class Cj . Let Pσj be the probability measure on SN induced by
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σj , i.e. Pσj is uniform on Cj . As the σj are independent, we have that
Pσ(s) =

∑
s1,...,sk

∏
j Pσj (sj), (s1 · · · sk = s), that is, Pσ is the convolution

of Pσ1 , . . . , Pσk . So, by multiplicativity of the Fourier transform for con-

volutions, P̂σ(ρλ) =
∏
j P̂σj (ρ

λ). Since each Pσj is supported by the single

conjugacy class Cj , we have P̂σj (ρ
λ) =

χλ(Cj)

fλ
Ifλ , where Ifλ is the fλ × fλ

identity matrix, see [9]. So

P̂σ(ρλ) =
k∏
j=1

P̂σj (ρ
λ) = (fλ)−k

k∏
j=1

χλ(Cj) Ifλ ,

and (1) becomes

(2)

Pσ(s) =
1

N !

∑
λ

(fλ)−k+1

 k∏
j=1

χλ(Cj)

 tr
(
ρλ(s−1)Ifλ

)
=

1

N !

∑
λ

(fλ)−k+1χλ(s)
k∏
j=1

χλ(Cj);

see Stanley [28], Exercise 7.67.
Note. For the special case s = id, the identity (2) becomes

Pσ(id) =
1

N !

∑
λ

(fλ)−k+2
k∏
j=1

χλ(Cj).

Since the left-hand side is just N (C1, . . . , Ck), the number of ways to write
the identity permutation as the product of elements of C1, . . . , Ck, divided

by
∏k
j=1 |Cj |, we obtain the well-known SN -version of Frobenius’s identity

(3) N (C1, . . . , Ck) =

∏k
j=1 |Cj |
N !

∑
λ

(fλ)−k+2
k∏
j=1

χλ(Cj).

We will use (2) for Cj ≡ CN , where CN is the conjugacy class of all
maximal cycles. By the Murnaghan-Nakayama rule, Sagan [26] (Lemma
4.10.2) or Stanley [28] (Section 7.17, Equation (7.75)), χλ(CN ) = 0 unless
the diagram λ is a single hook λ∗, with one row of length λ1 and one column
of height λ1, so λ1 + λ1 = N + 1. In that case

(4) χλ(CN ) = (−1)λ
1−1.

As for fλ
∗
, the number of Standard Young Tableaux of shape λ∗, applying

the hook length formula (or simply selecting the entries that go in the first
column), we obtain

(5) fλ
∗

=
N !

N
∏λ1−1
r=1 r

∏λ1−1
s=1 s

=

(
N − 1

λ1 − 1

)
.
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The equations (2), (4) and (5) imply

Pσ(s) =
1

N !

∑
λ∗

(−1)k(λ1−1)

(
N − 1

λ1 − 1

)−k+1

χλ
∗
(s),

or more generally: for A ⊆ SN ,

(6)

Pσ(A) =
1

N !

∑
λ∗

(−1)k(λ1−1)

(
N − 1

λ1 − 1

)−k+1

χλ
∗
(A),

χλ
∗
(A) :=

∑
s∈A

χλ
∗
(s).

By the Murnaghan-Nakayama rule, given a hook diagram λ∗, the value of
χλ

∗
(s) depends on s only through ~ν = ~ν(s) := {νr}r≥1, where νr = νr(s)

is the total number of r-long cycles in the permutation s. It was proved in
[24] that

(7) χλ
∗
(s) = (−1)λ

1+ν [ξλ1 ]
ξ

1− ξ
∏
r≥1

(1− ξr)νr ,

ν(s) :=
∑

r νr(s) being the total number of cycles of s. From (7) it follows
that

(8)

∑
s:~ν(s)=~ν

χλ
∗
(s) = (−1)NN !A(N, ν, λ1),

A(N, ν, λ1) :=

(
N − 1

N − λ1

)∑
`≥1

(−1)`
c(`, ν)

`!

(
N − λ1

N − `

)
,

where c(`, ν) is the total number of permutations of [`] = {1, 2, · · · , `} with
ν cycles; see the proof of Theorem 2.1 and the equation (2.20) in [24]. The
formulas (2), (6)-(8) are the basis of the proofs of a series of exact formulas
in the rest of the paper.

Remark. Some asymptotic approximations for the product of maximal
cycles can be obtained directly via the total variation distance bound based
on the Fourier inversion formula (1). This powerful approach was pioneered
by Diaconis and Shahshahani, [8], [9]. Observe that the conjugacy class CN
belongs to the alternating group AN for N odd, and to AcN = SN \ AN
for N even. So for N odd, the product of k cycles is in AN for every
k. For N even, the product of k cycles is in AN if and only if k even.
A minor modification of the argument in Chmutov and Pittel [7] yields
that in each case the total variation distance between the distribution of
product of k independent, uniformly random, N -cycles and the uniform
distribution on the corresponding range (AN or AcN , depending on parities

of N and k) decays as N−k/2 for n → ∞. The interested reader may wish
to compare this general error estimate with the particular remainder term
estimates arising from our exact results and the known/folklore results for
the uniformly random permutation from AN or AcN .
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3. Distribution of the number of cycles in σ

To stress dependence of σ on k, in this section we will write σ(k) instead
of σ. Let ν(σ) denote the number of cycles in a permutation σ. We start
with the following general formula.

Lemma 3.1. The identity

(9)

P(ν(σ(k)) = ν) = (−1)N
N∑

λ1=1

(−1)k(N−λ1)

(
N − 1

N − λ1

)−k+2

×
∑
`≥1

(−1)`
c(`, ν)

`!

(
N − λ1

N − `

)
holds.

Proof. Combination of (8), (6), and λ1 + λ1 = N + 1 proves (9). �

Corollary 3.2. For k ≥ 2, the identiy

(10) P(σ(k) = id) = P(ν(σ) = N) =
1

N !

N−1∑
r=0

(−1)kr
(
N − 1

r

)−k+2

,

holds.

Proof. Use formula (9) and the fact that c(`, ν) = 0 for ` < ν. �

Note that formula (10) appears as equation (7.181) in [28]. In the special
case of k = 2 Corollary 3.2 yields

(11) P(σ(2) = id) = 1
(N−1)! .

This is an obvious result, since the inverse of a uniformly random cycle is
again a uniformly random cycle.

The special case of k = 3 is not so obvious. However, combining (10) and
the identity

(12)
n∑
r=a

(−1)r(
n
r

) =
n+ 1

n+ 2

[
(−1)a(
n+1
a

) + (−1)n

]
(Sury [30], Stanley [28], equation (7.211), Sury et al. [31]), we have a non-
obvious answer

(13) P(σ(3) = id) =
1 + (−1)N−1

(N − 1)!(N + 1)
,

see [28], Exercise 7.67 (d).
The remarkable identity (12) followed from the elementary formula for a

special case of the beta integral:

(14)

(
n

r

)−1

= (n+ 1)

∫ 1

0
tr(1− t)n−r dt.
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Note that for even N , equation (13) returns zero probability, and that
is how it should be, since the product of three even cycles is an odd per-
mutation, and therefore, cannot be the identity. Furthermore, since σ(k) =
σ(k−1)σk, the product σ(k) is the identity iff σ(k−1) = (σk)

−1, which is a
maximal cycle. As (σk)

−1 is uniform on the set of all (N − 1)! maximal

cycles, and independent of σ(k−1), we see then that

(15) P(σ(k−1) is a cycle) = (N − 1)!P(σ(k) = id).

In the special case of k = 2, we rediscover a result that has been proved
several times, with different methods.

Corollary 3.3. We have

(16) P(σ(2) is a cycle) =
1 + (−1)N−1

N + 1
.

Proof. Immediate from equations (13) and (15). �

For even N , the statement of Corollary 3.3 is obvious, since the product
of two maximal cycles is an even permutation, and hence, it cannot be an
N -cycle for even N . For odd N , the result is equivalent to a well-known,

but not at all obvious, fact that there are 2(N−1)!
N+1 ways to factor a given

maximal cycle into a product of two maximal cycles; see for instance [6]
and the references therein. In general, the equations (10), (15) imply the
following.

Corollary 3.4. For all positive integers k, we have

(17) P(σ(k) is a cycle) =
1

N

N−1∑
r=0

(−1)(k+1)r

(
N − 1

r

)−k+1

.

Further, it follows from (9) that for every real number x, we have

E
[
xν(σ(k))

]
= (−1)N

N∑
λ1=1

(−1)k(N−λ1)

(
N − 1

N − λ1

)−k+2

×
∑
`≥1

(−1)`

`!

(
N − λ1

N − `

)∑
ν≥1

xνc(`, ν)

= (−1)N
N∑

λ1=1

(−1)k(N−λ1)

(
N − 1

N − λ1

)−k+2∑
`≥1

(
N − λ1

N − `

)(
−x
`

)

= (−1)N
N∑

λ1=1

(−1)k(N−λ1)

(
N − 1

N − λ1

)−k+2(N − λ1 − x
N

)

= (−1)N
N−1∑
r=0

(−1)kr
(
N − 1

r

)−k+2(r − x
N

)
.(18)
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For a positive integer x, the non-zero contributions to the sum come from
r < min{N, x}. So, for instance,

E
[
2ν(σ(k))

]
=N + 1 +

(−1)k

(N − 1)k−2
, (N > 1),

E
[
3ν(σ(k))

]
= 2(N + 2)2 −

N + 1

(N − 1)k−2
+

(
N − 1

2

)−k+2

, (N > 2),

where we use the notation (a)b = a(a−1) · · · (a−b+1), for integers a ≥ b ≥ 0.
For k = 2 and x > N , equation (18) implies

Corollary 3.5. We have

E
[
xν(σ(2))

]
= (−1)N

N∑
λ1=1

(
N − λ1 − x

N

)

=
N∑

λ1=1

(
λ1 + x− 1

N

)
=

N+x−1∑
j=N

(
j

N

)
−

x−1∑
j=N

(
j

N

)

=

(
N + x

N + 1

)
−
(

x

N + 1

)
=

(
N + x

N + 1

)
+ (−1)N

(
N − x
N + 1

)
.(19)

Of course, the identity (19) holds for all x. It is equivalent to Zagier’s
result, (see the Appendix by Zagier in Lando and Zvonkin [18]), stating that

P(ν(σ(2)) = ν) = (1 + (−1)N−ν) [xν ]

(
N + x

N + 1

)
.

For k = 3, we can prove the following (weighted) analogue of Corollary 3.5.

Corollary 3.6. We have

(20)
∑
N≥1

yN

N
E
[
xν(σ(3)(N))

]
=

∫ 1

0

(1− y(1− t))−x − (1− y(1− t))x

1− yt(1− t)
dt;

here σ(3)(N) is the product of 3 random cycles of length N , and |x| ≤ 1,
|y| < 1.

Note that the right-hand side of (20) is an odd function of x. This should
be expected, since–regardless of the parity of N–the number of cycles in
σ(3)(N) is odd. In particular, using

(1− y(1− t))−x − (1− y(1− t))x = 2
∑
r odd

logr(1− y(1− t))−1

r!
xr,

we obtain

(21)
∑
N≥1

yN

N
P(σ(3)(N) has r cycles) =

2

r!

∫ 1

0

logr
(
1− y(1− t)

)−1

1− yt(1− t)
dt.
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Here is a probabilistic interpretation of this identity. For y ∈ (0, 1), introduce
an integer-valued random variable N such that

P(N = N) =
yN

N
log(1− y)−1, N ≥ 1,

i.e. N has the logarithmic distribution with parameter y. So we (A) choose
the random length N of the permutations, (B) conditioned on N , generate,
in order, three independent uniform cycles of length N , and (C) compute

their product σ(3)(N ). Then identity (21) means that, for r odd,

P(σ(3)(N ) has r cycles) =
2

r! log(1− y)−1

∫ 1

0

logr
(
1− y(1− t)

)−1

1− yt(1− t)
dt.

Proof. (Of Corollary 3.6) Since both sides of (20) are analytic for |y| < 1, it
suffices to prove the identity for |y| ≤ 1/3. From (18), (14) and

(−1)N
(
r − x
N

)
= [zN ](1− z)r−x,

we obtain

N−1E
[
xν(σ(3)(N))

]
= [zN ]

N−1∑
r=0

(1− z)r−x
∫ 1

0
(1− t)N−1−rtr dt

= [zN ](1− z)−x
∫ 1

0
(1− t)N−1

N−1∑
r=0

(
−(1− z)t

1− t

)r
dt

= [zN ](1− z)−x
∫ 1

0

(1− t)N + (−1)N+1
(
(1− z)t

)N
1− tz

dt.

Next

yN (1− t)N [zN ]
(1− z)−x

1− tz
= [zN ]

(
1− (1− t)yz

)−x
1− t(1− t)yz

;

so∫ 1

0

∑
N≥1

yN (1− t)N [zN ]
(1− z)−x

1− tz
dt =

∫ 1

0

∑
N≥1

[zN ]

(
1− (1− t)yz

)−x
1− t(1− t)yz

dt

=

∫ 1

0

(
1− (1− t)y

)−x
1− t(1− t)y

dt− 1.(22)

Further, by the Cauchy integral formula,

yN [zN ]
(1− z)−x

1− tz
(
(1− z)t

)N
=

1

2πi

∮
|z|=2/3

(1− z)−x

zN+1(1− tz)
(
y(1− z)t

)N
dz

=
1

2πi

∮
|z|=2/3

(1− z)−x

z(1− tz)

(
y(1− z)t

z

)N
dz.
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On the circle |z| = 2/3, we have
∣∣y(1−z)t

z

∣∣ ≤ 5|y|/2 ≤ 5/6; so summing over
N ≥ 1, ∑

N≥1

(−1)N+1yN [zN ]
(1− z)−x

1− tz
(
(1− z)t

)N
=

1

2πi

∮
|z|=2/3

(1− z)−x

z(1− tz)

y(1−z)t
z

1 + y(1−z)t
z

dz

=
1

2πi

∮
|z|=2/3

(1− z)−x

z(1− tz)
· y(1− z)t
z + y(1− z)t

dz.

For t > 0, in the circle |z| ≤ 2/3 the integrand has two poles, both simple,

at z = 0 and z = − yt
1−yt , with respective residues equal to 1 and − (1−yt)x

1−yt(1−t) .

Thus ∑
N≥1

(−1)N+1yN [zN ]
(1− z)−x

1− tz
(
(1− z)t

)N
= 1− (1− yt)x

1− yt(1− t)
.

Integrating for t ∈ [0, 1] and adding to (22), we obtain

∑
N≥1

yN

N
E
[
xν(σ(3)(N))

]
=

∫ 1

0

(1− y(1− t))−x − (1− yt)x

1− yt(1− t)
dt,

which is equivalent to (20), as t(1− t) is symmetric with respect to t = 1/2.
As a partial check, the integral on the right-hand side equals log(1− y)−1 if
x = 1. �

Our final result in this section is a relatively compact integral formula for
Pn(ν), the probability that σ(2) has ν` cycles of length `, where 1 ≤ ` ≤ n,

for arbitrary ν, i.e. satisfying the only constraint
∑

` `ν` = N . Since σ(2) is
even, Pn(ν) = 0 if

∑
` even ν` is odd.

Theorem 3.7. We have

Pn(ν) =
N∏
` `
ν`ν`!

∫ 1

0

∏
`≥1

[
t` + (−1)`+1(1− t)`

]ν` dt.
Proof. First, the number of permutations s with cycle structure ν is equal
to N !/

∏
` `
ν`ν`!. Furthermore, for every such permutation s, formula (7)

implies that λ1 + λ1 = N + 1 and ν =
∑

` ν`. Setting r = N − λ1, and
choosing a positive ρ, we obtain

χλ
∗
(s) = (−1)N+r 1

2πi

∮
|ξ|=ρ

1

ξr+1(1− ξ)
∏
`≥1

(ξ` − 1)ν` dξ.
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Here the circular contour is traversed counter-clockwise, and ρ is arbitrary,
as the integrand is singular at ξ = 0 only. Substituting ξ = 1/η, we have

χλ
∗
(s) = (−1)N+r 1

2πi

∮
|η|=1/ρ

1

ηN−r(η − 1)

∏
`≥1

(1− η`)ν` dη,

with the contour traversed counter-clockwise again. Plugging this formula
into the equation (6), and using (14), we have

Pσ(2)(s) =
(−1)N

N !

N−1∑
r=0

(
N − 1

r

)−1

χλ
∗
(s)

=
(−1)NN

N !

N−1∑
r=0

χλ
∗
(s)

1∫
0

tr(1− t)N−1−r dt

=
(−1)N

(N − 1)!

1

2πi

∮
|η|=1/ρ

 1∫
0

(1− t)N−1
N−1∑
r=0

(
− tη

1− t

)r
dt

 ∏`(1− η`)ν`
ηN (η − 1)

dη

=
(−1)N

(N − 1)!

1∫
0

 1

2πi

∮
|η|=1/ρ

(1− t)N − (−tη)N

1− t+ tη
·
∏
`(1− η`)ν`
ηN (η − 1)

dη

 dt.

Pick ε ∈ (0, 1) and consider t ≤ 1 − ε. Choose ρ > (1 − ε)/ε. For this ρ,
the internal integrand has two singular points, η = 0 and η = −(1 − t)/t,
respectively within and outside of the integration contour. Crucially,

−(−tη)N

1− t+ tη
·
∏
`(1− η`)ν`
ηN (η − 1)

=
−(−t)N

1− t+ tη
·
∏
`(1− η`)ν`
η − 1

has no singularity at η = 0, and for t > 0, we have

(1− t)N

1− t+ tη
·
∏
`(1− η`)ν`
ηN (η − 1)

= O(|η|−2), |η| → ∞,

as
∑

` `ν` = N . So, by the residue theorem, the internal integral equals

1

2πi

∮
|η|=1/ρ

(1− t)N

1− t+ tη
·
∏
`(1− η`)ν`
ηN (η − 1)

dη

= −t−1 (1− t)N ·
∏
`(1− η`)ν`
ηN (η − 1)

∣∣∣∣
η=−1−t

t

= (−1)N
∏
`≥1

[
t` + (−1)`+1(1− t)`

]ν` ,
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for all 0 < t ≤ 1− ε. Letting ε→ 0, we obtain

Pσ(2)(s) =
1

(N − 1)!

1∫
0

∏
`≥1

[
t` + (−1)`+1(1− t)`

]ν` dt.
Multiplying the result by N !/

∏
` `

ν`ν`! we complete the proof. �

Corollary 3.8. Let PN,r denote the probability that all cycles of σ(2) are of
the same length r ≥ 2, i.e. N ≡ 0 (mod r) and νr = N/r. (So PN,r = 0 if r
is even and N 6≡ 0 (mod 2r).) Then

(23)

PN,r =
N

rN/r(N/r)!

∫ 1

0

[
tr + (−1)r+1(1− t)r

]N/r
dt

=
N

(N + 1)rN/r(N/r)!

∑
0≤j≤N

j≡0(mod r)

(−1)j(r+1)/r

(N/r
j/r

)(
N
j

) .
In particular,

(24) PN,2 =

(
1 + (−1)N/2

)
N/2

2N/2(N/2 + 1)!
, PN,3 =

N

(N/3)! (12)N/3

N/3∑
j=0

(
N/3

j

)
3j

2j + 1
,

(25) PN,4 =

(
1 + (−1)N/4

)
N/2

8N/4(N/4)!

N/4∑
j=0

(
N/4

j

)
1

N/4 + 2j + 1
.

Proof. The second identity in (23) follows from the binomial formula for the

integrand
[
tr + (−1)r+1(1 − t)r

]N/r
, and summation of the resulting beta

integrals. Furthermore, denoting u = 2t− 1, we have

[
tr + (−1)r+1(1− t)r

]N/r
=



uN/2, r = 2,(
3u2 + 1

4

)N/3
r = 3,(

u3 + u

2

)N/4
, r = 4;

Switching to u = 2t − 1 in the integral in (23), using the binomial formula
and integrating, we obtain formulas (24)-(25). Using the same device for
r > 4 would have necessitated the multinomial formula, leading to multi-fold
sums, progressively more complex than the second line formula in (23). �

Corollary 3.9. For all positive integers N , we have

P(σ(2) is an involution) = N
∑

ν1+2ν2=N
ν2 even

1

ν1! 2ν2(ν2 + 1)!
.
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The identities equivalent to (24) were proved in Doignon and Labarre [10]
by using the sum-type formulas for the total number of ways to represent
a maximal cycle as a product of a maximal cycle and a permutation from
a given conjugacy class, see Goupil [13], Stanley [27], Goupil and Schaeffer
[14]. The sequence (N − 1)!PN,2 is listed by Sloane as A035319, and known
as the counts of certain rooted maps, see Walsh and Lehman [32]. The
sequence (N − 1)!PN,3 is listed in Sloane as A178217.

4. Probability that the occupancy numbers of the cycles of σ
by the elements of [`] belong to a given set

In the section title and elsewhere below σ is σ(k), the product of k random
maximal cycles. Let A ⊆ Z≥0 be given. Recall that pA(N, `; k) is the
probability that the number of elements of [`] in each cycle of σ belongs to
the set A. Let A denote the set of all permutations s with this property,
so that pA(N, `; k) = Pσ(s ∈ A).

The examples include: (1) A1 = Z>0; each cycle must contain at least
one element of [`]; (2) A2 = {0, `}; one of the cycles of σ contains the whole
set [`]; (3) A3 = {0, 1}; each element of [`] belongs to a distinct cycle of
σ. The problem of finding an explicit formula for pA(N, `; k) was solved by
Stanley [29] in the special cases of k = 2, ` = 2 and A = {0, 2} or A = {0, 1}.
Recently Bernardi et al. [3] solved the case k = 2, A = A3 for ` ≥ 2. In fact
they solved a general problem of separation probability for t disjoint sets
S1, . . . ,St. We will present an alternative solution for this problem.

To evaluate pA(N, `; k), consider first QA(~ν, `), the total number of per-
mutations s of [N ], with ~ν(s) = {νr(s)} = {νr} = ~ν, such that the number of
elements of [`] in every cycle is an element of A. The reason we need QA(~ν, `)
is that the key formula (7) expresses χλ∗(s) through the cycle counts νr(s),
r ≥ 1.

Theorem 4.1. For all ` ≥ 2, we have

(26) QA(~ν, `) = (N − `)! `! [w`]
∏
r

1

νr!

(∑
a∈A

(
r
a

)
wa

r

)νr
.

Proof. To evaluate QA(~ν, `), it suffices to evaluate its counterpart QA(~ν, `)
that corresponds to the case when cycles of the same length are ordered,
because

QA(~ν, `) =
QA(~ν, `)∏

r νr!
.

Introduce the integers ar,j ≥ 0, br,j ≥ 0 that stand for the generic numbers
of elements from [`] and [N ] \ [`] in the j-th cycle of length r, (j ∈ [νr]). Let
a (resp. b) denote the sequence of the numbers ar,j (resp. br,j), in increasing
order of the indices r, and (for each r) in increasing order of the indices j.
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For a, b to be admissible we must have

ar,j + br,j = r,(27)

ar,j ∈ A,(28) ∑
r,j

ar,j = `,
∑
r,j

br,j = N − `.(29)

Given a and b, the number of ways to partition [`] into the subsets of
cardinality ar,j and to partition [N ] \ [`] into the subsets of cardinality br,j
is

`!∏
r,j ar,j !

· (N − `)!∏
r,j br,j !

.

(Here the subsets form two ordered sequences, each in increasing order of r,
and (given r) in increasing order of j ∈ [νr].) Given two such set partitions
of [`] and N \ [`], the number of ways to form a cycle from the (r, j)-th set
belonging to the first partition and the (r, j)-th set belonging to the second
partition is (ar,j + br,j − 1)! = (r − 1)!. Therefore

(30)

QA(~ν, `) = (N − `)! `!
∑

a,b meet
(27),(28),(29)

∏
r

((r − 1)!)νr
∏
j∈[νr]

1

ar,j ! br,j !

= (N − `)! `! [w`]
∏
r

1

rνr

∏
j∈[νr]

∑
ar,j∈A

(
r

ar,j

)
war,j

= (N − `)! `! [w`]
∏
r

(∑
a∈A

(
r
a

)
wa

r

)νr
.

�

Let A(~ν) := {s ∈ A : ~ν(s) = ~ν}. Then, using (7), ν =
∑

r νr and (26), we
conclude that

χλ
∗
(A(~ν)) = (−1)λ

1+νQA(~ν, `) · [ξλ1 ]
ξ

1− ξ
∏
r≥1

(1− ξr)νr

= (−1)λ
1
(N − `)! `! · [ξλ1w`] ξ

1− ξ
∏
r

1

νr!

(
−

(1− ξr)
(∑

a∈A
(
r
a

)
wa
)

r

)νr
.

This identity implies

(31) χλ
∗
(A) = (−1)λ

1
(N − `)! `!

× [ξλ1w`]
ξ

1− ξ
∑
~ν:

1ν1+2ν2+···=N

∏
r

1

νr!

(
−

(1− ξr)
(∑

a∈A
(
r
a

)
wa
)

r

)νr
.
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The expression in the second line of (31) equals

[ξλ1w`xN ]
ξ

1− ξ
∑
~ν≥0

∏
r

(xr)νr

νr!

(
−

(1− ξr)
(∑

a∈A
(
r
a

)
wa
)

r

)νr

=[ξλ1w`xN ]
ξ

1− ξ
∏
r

∑
νr≥0

1

νr!

(
−
xr(1− ξr)

(∑
a∈A

(
r
a

)
wa
)

r

)νr

=[ξλ1w`xN ]
ξ

1− ξ
∏
r

exp

(
−
xr(1− ξr)

(∑
a∈A

(
r
a

)
wa
)

r

)

=[ξλ1w`xN ]
ξ

1− ξ
exp

−∑
r≥1

xr(1− ξr)
(∑

a∈A
(
r
a

)
wa
)

r

 .(32)

4.1. Probability that each cycle of σ contains at least one element
of [`]. In this case A = A1 = Z>0. Therefore∑

a∈A

(
r

a

)
wa = (1 + w)r − 1.

In this section, we prove the following result and discuss some of its special
cases.

Theorem 4.2. For all positive integers ` and k, we have

(33) pA1(N, `; k) =

(
N

`

)−1 N∑
λ1=`

(−1)(k−1)(N−λ1)

(
N − 1

N − λ1

)−k+1(λ1 − 1

`− 1

)
.

Proof. Using (31), (32) and
∑

j≥1 z
j/j = − log(1− z), |z| < 1, we obtain

(34)

χλ
∗
(A) =(−1)λ

1
(N − `)! `!

× [ξλ1w`xN ]
ξ

1− ξ

(
1− x(1 + w)

)
(1− ξx)(

1− ξx(1 + w)
)
(1− x)

.

Let us simplify this formula. Write

[w`]
1− x(1 + w)

1− ξx(1 + w)
=
ξ − 1

ξ
[w`]

1

1− ξx(1 + w)

=
1− ξ
ξ2x

[w`]

(
w − 1− ξx

ξx

)−1

=
1− ξ
ξ2x

(
−1

`

)
(−1)−1−`

(
1− ξx
ξx

)−1−`

=− 1− ξ
ξ2x

(
ξx

1− ξx

)1+`

.
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Therefore

[ξλ1w`xN ]
ξ

1− ξ

(
1− x(1 + w)

)
(1− ξx)(

1− ξx(1 + w)
)
(1− x)

= −[ξλ1xN ] (1−x)−1

(
ξx

1− ξx

)`
= −[xN ]xλ1(1− x)−1 · [yλ1 ]

(
y

1− y

)`
= −[yλ1−k](1− y)−` = −

(
λ1 − 1

λ1 − `

)
,

where
(
a
b

)
= 0 for b < 0. So (34) becomes

(35) χλ
∗
(A) = (−1)λ

1−1(N − `)! `!
(
λ1 − 1

λ1 − `

)
.

Combining (35) and (6) we conclude that

(36)

pA1(N, `; k) =
1

N !

∑
λ∗

(−1)k(λ1−1)

(
N − 1

λ1 − 1

)−k+1

χλ
∗
(A)

=

(
N

`

)−1 N∑
λ1=`

(−1)(k−1)(N−λ1)

(
N − 1

N − λ1

)−k+1(λ1 − 1

`− 1

)
,

which was to be proved. �

Note that as N → ∞, the dominant contribution to the right-hand side
in (36) comes from λ1 = N , so that pA1(N, `; k) = `/N + O(N−2`+1); the

formula is useful for ` > 1. (Of course, pA1(N, 1; k) = P (σ(k) is a cycle), see
(17).) We remark that `/N is the exact probability that every cycle of the
uniformly random permutation of [N ] contains at least one element of [`];
see Lovász [22], Section 3, Exercise 6.

Theorem 4.3. For all positive integers `, the double identity holds:

(37)

pA1(N, `; 2) = (−1)N−1N

(
N

`

)−1

×
[

(−1)`−1

(N + `)
(
N+`−1
`−1

) +
`−1∑
j=0

(−1)N+`−j(N
j

)
N + `− j

]

= (−1)N+`N

(
N

`

)−1 N−∑̀
i=0

(−1)i
(
N

i

)
1

i+ `
.

Note. The first (second resp.) identity is computationally efficient when `
(N − ` resp.) is moderately valued.

Proof. For the proof we need a certain binomial identity. Introduce

(38) Sn,a,b =

n∑
r=a+b

(−1)r
(
r−a
b

)(
n
r

) .
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This function is relevant since (36) is equivalent to

(39) pA1(N, `; 2) = (−1)N−1

(
N

`

)−1

SN−1,0,`−1.

As we mentioned earlier

(40) Sn,0,0 = (1 + (−1)n)
n+ 1

n+ 2
,

([30], [28], [31]), and the key element of the proofs was identity (14).
In fact, in [30] the equation (14) was used to derive a sum-type formula,

still with n+ 1 terms, for
n∑
r=0

(−1)r
xr(
n
r

) ,
that yielded (40) via setting x = 1. We also use (14) but avoid an interme-
diate sum with n+ 1 terms, and instead differentiate the resulting integral
with respect to the parameter x. Here are the details. For a+ b ≤ n, define

Sn,a,b(x) :=

n∑
r=a+b

(−1)r
xr−a(
n
r

) .
Observe that Sn,a,b = 1

b!
dbSn,a,b(x)

dxb

∣∣∣
x=1

. Now

(41)

Sn,a,b(x) = (n+ 1)

∫ 1

0

(
n∑

r=a+b

(−1)rxr−atr(1− t)n−r
)
dt

=(n+ 1)(−1)a+b

∫ 1

0
ta+b(1− t)n−a−bxb

n∑
r=a+b

(
− xt

1− t

)r−a−b
dt

=(n+ 1)(−1)a+b

∫ 1

0

xb + (−1)n−a−bxn−a+1
(

t
1−t

)n−a−b+1

1 + xt
1−t

× ta+b(1− t)n−a−b dt.

To compute (db/dxb)Sn,a,b(x) at x = 1, we differentiate b times the right-
hand side of (41) with respect to x by carrying the operation inside the
integral and then setting x = 1. So
(42)

dbS(n, a, x)

dxb

∣∣∣∣
x=1

= (−1)a+b(n+ 1)

×
∫ 1

0

∂b

∂xb

xb + (−1)n−a−bxn−a+1
(

t
1−t

)n−a−b+1

1 + xt
1−t

∣∣∣∣
x=1

ta+b(1− t)n−a−b dt.
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By (uv)(b) =
∑

j

(
b
j

)
u(j)v(b−j), the partial derivative at x = 1 is

b∑
j=0

(
b

j

)(
(b)j + (−1)n−a−b

(
t

1−t

)n−a−b+1
(n− a+ 1)j

)

× (−1)b−j
(b− j)!(

1 + t
1−t

)b−j+1
·
(

t

1− t

)b−j

=

b∑
j=0

(−1)b−j
(
b

j

)[
b! tb−j(1−t)+(−1)n−a−b(b−j)! (n−a+1)j

tn−a+1−j

(1− t)n−a−b

]

= b!

(1− t)b+1 +

b∑
j=0

(−1)n−a−j
(
n− a+ 1

j

)
tn−a+1−j

(1− t)n−a−b

 .
Plugging the last expression into (42) and using (14) we obtain

(43)

Sn,a,b =
n∑

r=a+b

(−1)r
(
r−a
b

)(
n
r

) = (n+ 1)

[
(−1)a+b

(n+ 2 + b)
(
n+b+1
a+b

)
+

b∑
j=0

(−1)n+b−j
(
n− a+ 1

j

)
1

n+ 2 + b− j

]
.

Using yet another identity
u∑
j=0

(−1)j
(
u

j

)
1

v + j + 1
=

1

(u+ v + 1)
(
u+v
v

) ,
from Sury et al. [31], we transform the equation (43) into

(44) Sn,a,b = (−1)a+b(n+ 1)
n−a−b∑
i=0

(−1)i
(
n− a+ 1

i

)
1

i+ a+ b+ 1
.

So, applying the formulas (43), (44) for n = N − 1, a = 0 and b = ` − 1,
and using (39), we immediately obtain the double identity (37). �

Note. A hard-working reviewer pointed out that just equivalence of (33)
and (37) follows from classic transformation formulas in the theory of hyper-
geometric series, see Gasper and Rahman [12], Bailey [2]. However, neither
(33) nor (37) were known before.

Example 4.4. Using the first expression in (37) we obtain

pA1(N, 1; 2) =


2

N+1 if N is odd,

0 if N is even.

This is equivalent to the result already mentioned in Section 3, since pA1(N, 1; 2)
is indeed equal to the probability that σ is a maximal cycle.
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4.2. Probability that the elements 1, . . . , ` are in the same cycle of
σ. This time A = A2 = {0, `}, so that

(45)
∑
a∈A2

(
r

a

)
wa = 1 +

(
r

`

)
w`.

Our goal in this section is to prove the following theorem and its special
case of k = 2.

Theorem 4.5. For all integers ` ≥ 2, we have

pA2(N, `; k) =
1

N !

N∑
λ1=1

(−1)k(λ1−1)

(
N − 1

λ1 − 1

)−k+1 ∑
s admissible

χλ
∗
(s)

=
1

`

(
N

`

)−1∑
λ1

(−1)(k+1)(λ1−1)

(
N − 1

λ1 − 1

)−k+1

×
{

1{λ1<N}

[(
N − 1

`− 1

)
−
(
N − λ1 − 1

`− 1

)]
+ 1{λ1=N}

(
N

`

)}
.

Proof. By and large, the proof is similar to that in the case of A1, but the
computation is more involved. The reader may want to revisit the proofs of
formulas (31) and (32) before proceeding further.

Formula (45) implies

(46) QA2(~ν, `) = (N − `)! `! [w`]
∏
r

1

νr!

(
1+(r`)w

`

r

)νr
.

So, using (31), (32) and ν =
∑

r νr, we conclude that

(47) χλ
∗
(A) = (−1)λ

1
(N − `)! `!

× [ξλ1w`]
ξ

1− ξ
∑
~ν:

1ν1+2ν2+···=N

∏
r

1

νr!

(
−(1− ξr)

1 +
(
r
`

)
w`

r

)νr
.

Since
∑

r rνr = N , using the same intermediate steps as in the proof of (32),
we see that the second line expression in (47) equals

[ξλ1w`xN ]
ξ

1− ξ
∑
~ν≥0

∏
r

(xr)νr

νr!

(
−(1− ξr)

1 +
(
r
`

)
w`

r

)νr

= [ξλ1w`xN ]
ξ

1− ξ
exp

−∑
r≥1

xr(1− ξr)
1 +

(
r
`

)
w`

r

 .

Here, using the identities∑
b≥a

(
b

a

)
zb =

za

(1− z)a+1
,
∑
r>1

zr

r
= − log(1− z),
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we obtain∑
r≥1

xr(1− ξr)
1 +

(
r
`

)
w`

r

= − log(1− x) + log(1− xξ) +
w`

`

∑
r≥1

(
r − 1

`− 1

)(
xr − (xξ)r

)
= log

1− xξ
1− x

+
w`

`

(
x`

(1− x)`
− (xξ)`

(1− xξ)`

)
.

Consequently we have

[w`] exp

−∑
r≥1

xr(1− ξr)
1 +

(
r
`

)
w`

r


=

1

`

1− x
1− xξ

(
(xξ)`

(1− xξ)`
− x`

(1− x)`

)
.

Therefore the expression in the second line of (47) is equal to

1

`
[ξλ1xN ]

ξ

1− ξ
· 1− x

1− xξ

(
(xξ)`

(1− xξ)`
− x`

(1− x)`

)
=

1

`
[ξλ1xN ]

(
1

1− ξ
− 1

1− xξ

)(
(xξ)`

(1− xξ)`
− x`

(1− x)`

)
=:

1

`
(T1 + T2 + T3 + T4).

Here

(48)

T1 = [ξλ1xN ]
1

1− ξ
· (xξ)`

(1− xξ)`

= [ξλ1 ]
ξN

1− ξ
[yN ]

y`

(1− y)`
= 1{λ1=N}

(
N − 1

`− 1

)
;

next

(49)

T2 = −[ξλ1xN ]
1

1− ξ
· x`

(1− x)`

= −[xN−`]
1

(1− x)`
= −

(
N − 1

`− 1

)
;

next

(50)

T3 = −[ξλ1xN ]
(xξ)`

(1− xξ)`+1

= −1{λ1=N} [yN−`]
1

(1− y)`+1
= −1{λ1=N}

(
N

`

)
;
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and finally

(51)

T4 = [ξλ1xN ]
1

1− xξ
x`

(1− x)`

= [xN ]
xλ1+`

(1− x)`
= [xN−λ1−`]

1

(1− x)`

= 1{λ1<N}

(
N − λ1 − 1

`− 1

)
.

It follows from (48), (49), (50) and (51) that

1

`
(T1 + T2 + T3 + T4)

= −1

`

{
1{λ1<N}

[(
N − 1

`− 1

)
−
(
N − λ1 − 1

`− 1

)]
+ 1{λ1=N}

(
N

`

)}
.

So (47) becomes

(52) χλ
∗
(A) = (−1)λ

1−1(N − `)! `!

× 1

`

{
1{λ1<N}

[(
N − 1

`− 1

)
−
(
N − λ1 − 1

`− 1

)]
+ 1{λ1=N}

(
N

`

)}
.

Combining (52) and (6) we obtain the statement that was to be proved. �

Corollary 4.6. For all integers ` ≥ 2, we have

(53)

pA2(N, `; 2) =
1

`
− 1

N(N + 1)

+
(−1)`+1

`
(
N
`

)
(N + `

`

)−1

+N
`−2∑
j=0

(−1)N−j
(
N − 1

j

)
1

N + `− j


=

1

`
− 1

N(N + 1)

+ (−1)`+1

(
N − 1

`− 1

)−1 N−∑̀
i=0

(−1)i
(
N − 1

i

)
1

i+ `+ 1
.

Proof. By Theorem 4.5, for k = 2 we have: with r := N − λ1,

(54)

pA2(N, `; 2) =
1

`
+

1

`

(
N

`

)−1 N−1∑
r=1

(−1)r

×
(
N − 1

r

)−1 [(N − 1

`− 1

)
−
(
r − 1

`− 1

)]
=

1

`
+

1

`

(
N

`

)−1 [(N − 1

`− 1

)
SN−1,1,0 − SN−1,1,`−1

]
.
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According to (43) and (44), we have

SN−1,1,0 =SN−1,0,0 − 1 =
[
1 + (−1)N−1

] N

N + 1
− 1,

SN−1,1,`−1 =(−1)`
[(
N + `

`

)−1

+N

`−1∑
j=0

(−1)N−j
(
N − 1

j

)
1

N + `− j

]

=(−1)`N

N−1−`∑
i=0

(−1)i
(
N − 1

i

)
1

i+ `+ 1
.

Plugging the expression for SN−1,1,0 and the first expression for SN−1,1,`−1

into (54), we obtain after simple algebra

pA2(N, `; 2) =
1

`
+

[
1 + (−1)N−1

N + 1
− 1

N

]

+
(−1)`+1

`
(
N
`

)
(N + `

`

)−1

+N
`−1∑
j=0

(−1)N−j
(
N − 1

j

)
1

N + `− j


=

1

`
− 1

N(N + 1)
(55)

+
(−1)`+1

`
(
N
`

)
(N + `

`

)−1

+N
`−2∑
j=0

(−1)N−j
(
N − 1

j

)
1

N + `− j

 .
(The term (−1)N−1/(N + 1) and the (` − 1)-th term in the sum over j
cancelled each other.) Using the second expression for SN−1,1,`−1, we obtain
an alternative formula:

(56)

pA2(N, `; 2) =
1

`
− 1

N(N + 1)

+ (−1)`+1

(
N − 1

`− 1

)−1 N−∑̀
i=0

(−1)i
(
N − 1

i

)
1

i+ `+ 1
.

�

The equivalent formulas (55) and (56) are computationally efficient for
moderate ` and moderate N−` respectively. In particular, plugging ` = 2, 3
into (55) and simplifying, we recover Stanley’s results, [29].

5. The probability that σ separates the disjoint sets S1, . . . ,St
Let S1, . . . ,St be disjoint subsets of [N ]. Let `j = |Sj |, 1 ≤ j ≤ t,

` =
∑

j `j . Introduce p(N, ~̀; k), the probability that the permutation σ
separates the sets S1, . . . ,St, meaning that no cycle of σ contains a pair of
elements from two distinct sets Si and Sj . Bernardi et al. [3] were able to
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derive a striking formula for p(N, ~̀; 2):
(57)

p(N, ~̀; 2) =
(N − `)!

∏
j `j !

(N + t)(N − 1)!

(−1)N+`
(
N−1
t−2

)(
N+`
`−t
) +

`−t∑
j=0

(−1)j
(
`−t
j

)(
N+j+1

`

)(
N+t+j

j

)
 ,

which is a sum of `− t+ 2 terms. Remarkably,
∏
j `j ! aside, the rest of this

expression does not depend on the individual `j . The equation (57) is very
efficient for values of `, t relatively small compared to N .

In this section first we apply our approach to obtain a formula for p(N, ~̀; k)
when k ≥ 2.

Theorem 5.1. Introduce

K(N, `, t; r) =
[
ξr−`+tηN−`

](1− ξ
1− η

)t−1

(1− ξη)−`−1,

and define αk(N, t) = t − 1 if k is odd, and αk(N, t) = N + t if k is even.
Then

(58) p(N, ~̀; k)=
(−1)αk(N,t)

∏
j `j !

(N)`

N−1∑
r=`−t

(−1)(k+1)r

(
N − 1

r

)−k+1

K(N, `, t; r),

i.e. p(N, ~̀; k) is
∏
j `j ! times a factor dependent on ` and t. Consequently,

the probability that the cycles of the product of k random cycles of length N
partition the set of cardinality ` into t subsets is given by

p(N, `, t; k)=
(−1)αk(N,t)

(
`−1
t−1

)
t! (N)`

N−1∑
r=`−t

(−1)(k+1)r

(
N − 1

r

)−k+1

K(N, `, t; r).

The formula (58) is computationally efficient for `− t close to N .

Proof. Let A(~̀) denote the set of all permutations that separate the sets

S1, . . . ,St, and let A(~ν, ~̀) = {s ∈ A(~̀) : ~ν(s) = ~ν}, Q(~ν, ~̀) = |A(~ν, ~̀)|.
Each cycle of such a permutation either does not contain any element of
∪jSj , or contains some of the elements of exactly one set Sj . Since |[N ] \ ∪jSj | =
N − `, denoting

∏
j w

`j
j = ~w

~̀
, analogously to (30) we have

(59)

Q(~ν, ~̀)

(N − `)!
∏
j `j !

= [yN−` ~w
~̀
]

[∏
r

1

νr!

(
yr +

∑t
j=1

∑
a>0

(
r
a

)
waj y

r−a

r

)νr]

= [yN−` ~w
~̀
]

[∏
r

1

νr!

(
−(t− 1)yr +

∑t
j=1(wj + y)r

r

)νr]
.
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(The interested reader may wish to check this identity by following the steps
of the proof of (30).) Using (59), we obtain

(60) χλ
∗
(A(~̀)) = (−1)λ

1
(N − `)!

∏
j

`j !

×[ξλ1yN−` ~w
~̀
]

ξ

1− ξ
∑
~ν

∏
r

1

νr!

(
−

(1− ξr)
(
−(t− 1)yr +

∑
j(wj + y)r

)
r

)νr
,

the sum being for ~ν ≥ 0 with
∑

r rνr = N . So the expression in the second
line of (60) equals

[ξλ1xNyN−` ~w
~̀
]
ξ

1− ξ
∑
~ν≥0

∏
r

(xr)νr

νr!

(
−

(1− ξr)
[
−(t− 1)yr +

∑
j(wj + y)r

]
r

)νr

= [ξλ1xNyN−` ~w
~̀
]
ξ

1− ξ
∏
r

exp

(
−
xr(1− ξr)

[
−(t− 1)yr +

∑t
j=1(wj + y)r

]
r

)
.

Using
∏
r≥1 exp(−ηr/r) = 1 − η, (|η| < 1), we transform the last product

into (
1− ξxy
1− xy

)t−1 t∏
j=1

1− x(wj + y)

1− ξx(wj + y)
.

Further

[~w
~̀
]
t∏

j=1

1− x(wj + y)

1− ξx(wj + y)
=

(
1− xy
1− ξxy

)t
·

t∏
j=1

[w
`j
j ]

1− xwj
1−xy

1− ξxwj
1−ξxy

=

(
1− xy
1− ξxy

)t t∏
j=1

[(
ξx

1− ξxy

)`j
− x

1− xy

(
ξx

1− ξxy

)`j−1
]

=

(
1− xy
1− ξxy

)t( ξx

1− ξxy

)`−t( (ξ − 1)x

(1− ξxy)(1− xy)

)t
=

(ξx)`−txt(ξ − 1)t

(1− ξxy)`+t
.

So we need

[ξλ1xNyN−`]
ξ

1− ξ

(
1− ξxy
1− xy

)t−1 (ξx)`−txt(ξ − 1)t

(1− ξxy)`+t

= (−1)t[ξλ1−1−(`−t)xN−`yN−`](1− ξ)t−1(1− xy)−t+1(1− ξxy)−`−1

= (−1)t[ξλ1−1−(`−t)zN−`]

(
1− ξ
1− z

)t−1

(1− ξz)−`−1

= (−1)tK(N, `, t; r), r := λ1 − 1− (`− t).
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Here

(61)

K(N, `, t; r) = [ξr−`+tzN−`]

(
1− ξ
1− z

)t−1

(1− ξz)−`−1

=
∑
j

(−1)r−∆−j
(
`+ j

j

)(
t− 1

r −∆− j

)(
N −∆− j − 2

t− 2

)
,

where we set ∆ = ` − t. Obviously K(N, `, t; r) = 0 for r < ` − t, and less
obviously for r ≥ N . Indeed

(62) [zN−`] (1− ξ)t−1(1− z)−t+1(1− ξz)−`+1

=
∑

j≤N−`
(−1)N−`−j

(
−t+ 1

N − `− j

)
[zj ](1− ξ)t−1(1− ξz)−`−1,

and the [zj ]-factor is a polynomial of ξ of degree t− 1 + j ≤ t− 1 +N − ` <
r − `+ t if r ≥ N .

So the equation (60) becomes

χλ
∗
(A(~̀)) = (−1)λ

1+t(N − `)!

(
t∏

j=1

`j !

)
K(N, `, t; r).

Combining this with equation (6), and λ1 + λ1 = N + 1, we obtain the
statement that was to be proved. �

Notice that

K(N,N, t; r) = [ξr−N+t](1− ξ)t−1 = (−1)r−N+t

(
t− 1

r −N + t

)
.

Let ` =
∑

j `j = N . Introducing βk(N) = N − 1 for k odd, βk(N) = 0 for k

even, we transform (58) into

p(N, ~̀; k) =
(−1)βk(N)

∏
j `j !

N !

N−1∑
r=N−t

(−1)kr
(
N − 1

r

)−k+1( t− 1

r −N + t

)
,

an alternating sum of t terms. For t = N , note that `i = 1 for all i, and

that p(N, ~̀; k) = P(σ = id). The resulting formula agrees with (10), since
for k odd and N even the sum over r ∈ [0, N − 1] is zero.

5.1. The case of k = 2. From now on we focus on k = 2, and general
~̀. We begin with a relatively compact formula that represents p(N, ~̀; 2)
as a composition of one-dimensional integration operation and coefficient
extraction operation applied to a bivariate rational function.
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Theorem 5.2. Recalling the notation (a)b = a(a−1) · · · (a−b+1), we have

(63)

p(N, ~̀; 2) =
(−1)N+`N

∏
j `j !

(N)`

× [zN−`](1− z)−t+1

∫ 1

0

(1− u)N+1u`−t

(1− u+ zu)`+1
du.

Proof. For k = 2, equation (58) becomes

p(N, ~̀; 2) =
(−1)N+t

∏
j `j !

(N)`

N−1∑
r=`−t

(−1)r
(
N − 1

r

)−1

K(N, `, t; r),(64)

where, by Lemma 5.1,

K(N, `, t; r) =
[
ξr−`+tηN−`

] (1− ξ
1− η

)t−1

(1− ξη)−`−1.

In (64) we can extend the summation to r ∈ [`−t,∞), since K(N, `, t; r) = 0
for r ≥ N . Using this observation and (14), we first evaluate

(65)
N−1∑
r=`−t

(−1)r
(
N − 1

r

)−1

[ξr−`+t] (1− ξ)t−1(1− ξz)−`−1

= N
∞∑

r=`−t
(−1)r[ξr−`+t]

(1− ξ)t−1

(1− ξz)`+1

∫ 1

0
ur(1− u)N−1−r du

= N

∫ 1

0
(1− u)N−1

( ∞∑
r=`−t

(
− u

1− u

)r
[ξr−`+t]

(1− ξ)t−1

(1− ξz)`+1

)
du

= N

∫ 1

0
(1− u)N−1

(
− u

1− u

)`−t( ∞∑
r=`−t

[ξr−`+t]
(1 + ξ u

1−u)t−1

(1 + ξz u
1−u)`+1

)
du

= N

∫ 1

0
(1− u)N−1

(
− u

1− u

)`−t (1 + ξ u
1−u)t−1

(1 + ξz u
1−u)`+1

∣∣∣∣∣
ξ=1

du

= (−1)`−tN

∫ 1

0

(1− u)N+1u`−t

(1− u+ zu)`+1
du;

(in the fifth line we used
∑

r≥0[ξr]f(ξ) = f(1) for the series f(ξ) =
∑

r≥0 arξ
r).

So (64) is transformed into (63). �

Corollary 5.3. For ` = N the formula (63) yields

(66) p(N, ~̀; 2) =
N
∏
j `j !

N !

∫ 1

0
uN−t du =

∏
j `j !

(N − 1)!(N − t+ 1)
.

To compare, the separation probability for the uniformly random permuta-
tion of [N ] is

∏
j `j !/N !.

For `1 = · · · = `t−1 = 1, `t = N − t + 1, (2 ≤ t ≤ N), p(N, ~̀; 2) is
the probability that all elements of a given subset of cardinality t − 1 are
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fixed points of σ(2); the number of such subsets is
(
N
t−1

)
. Furthermore the

probability that all the elements of [N ] are fixed, i.e. σ(2) = id, is 1
(N−1)! ,

see (11). So using the inclusion-exclusion formula, we obtain:

P(σ(2) is a derangement) = N

N−1∑
τ=0

(−1)τ

(N − τ)τ !
+

(−1)N

(N − 1)!
.

For comparison, the probability that the uniformly random permutation of
[N ] is a derangement equals

∑N
τ=0(−1)τ 1

τ ! .

More generally, if in (63) we take the factor (1 − z)−t+1 inside the in-
tegral, and perform extraction of the coefficient of zN−` from the resulting
integrand, then we end up with an alternating-sign sum of the beta integrals
and obtain an explicit formula

(67) p(N, ~̀; 2) =
N
∏
j `j !

(N)`

∑
k≤N−`

(−1)k
(
t+k−2
t−2

)(
N−k
`

)
(N − t+ 1)

(
N−t
k

) .
This expression is computationally efficient for moderate N − `, but pro-
gressively less useful for larger values of N − `.

5.2. An alternative formula deduced by the Gosper-Zeilberger al-
gorithm. In this section, we will show that equation (63) can be trans-
formed so that extraction of the coefficient of zN−` will lead to a sum with
`−t+2 number of terms, close in appearance to the formula (57) by Bernardi
et al.

Clearly it is the outside factor (1 − z)−t+1 that causes the number of
summands in (67) grow indefinitely with N . To get rid of (1 − z)−t+1, we
resort to repeated integration by parts of the integral, (denote it I(z)), with
each step producing the outside factor 1− z. However the factor u`−t in the
integrand of I(z) would have made the integration process unwieldy; so we
apply it instead to K1(z), where

Kν(z) :=

∫ 1

0

(1− u)N+ν

(1− u+ zu)t+ν
du,

because

(68) I(z) =
(−1)`−t

(t+ 1)(`−t)
d`−tK1(z)

dz`−t
.

One integration by parts leads to

K1(z) =
1

N + 2
+

(t+ 1)(1− z)
N + 2

∫ 1

0

(1− u)N+2

(1− u+ zu)t+2
du

=
1

N + 2
+

(t+ 1)(1− z)
N + 2

K2(z).
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A clear pattern emerges here. Let us denote by a(b) the rising factorial
a(a+ 1) · · · (a+ b− 1). After `− 1 integrations by parts, we get

K1(z) =
`−1∑
j=1

(t+ 1)(j−1)

(N + 2)(j)
(1− z)j−1 +

(t+ 1)(`−1)

(N + 2)(`−1)
(1− z)`−1K`(z).

So, using (68) and

d`−t
[
(1− z)`−1K`

]
dz`−t

=
`−t∑
µ=0

(−1)µ
(
`− t
µ

)
(`− 1)µ(1− z)`−1−µd

`−t−µK`

dz`−t−µ
,

we obtain

(1− z)−t+1I(z)
(t+ 1)`−t

(−1)`−t
= (−1)`−t

`−1∑
j=1

(t+ 1)(j−1)(j − 1)`−t
(N + 2)(j)

(1− z)j−`

+
(t+ 1)(`−1)

(N + 2)(`−1)

`−t∑
µ=0

(−1)µ
(
`− t
µ

)
(`− 1)µ(1− z)`−t−µ d

`−t−µK`(z)

dz`−t−µ
.

It remains to extract the coefficient of [zN−`] in the right-hand side expres-
sion. First,

[zN−`](1− z)j−` = (−1)N−`
(
j − `
N − `

)
.

Next, for every r ≥ 0,

[zr]
d`−t−µK`

dz`−t−µ
= (−1)`−t−µ(t+ `)(`−t−µ)[zr]

∫ 1

0

(1− u)N+`u`−t−µ

(1− u+ zu)2`−µ du

= (−1)`−t−µ(t+ `)(`−t−µ)

(
−2`+ µ

r

)∫ 1

0
(1− u)N−`+µ−ru`−t−µ+r du

= (−1)`−t−µ
(t+ `)(`−t−µ)

(−2`+µ
r

)
(N − t+ 1)

(
N−t

`−t−µ+r

) .
So

(69)

[zN−`]

{
(1− z)`−t−µ d

`−t−µK`

dz`−t−µ

}
=

∑
k≤`−t−µ

{
[zk](1− z)`−t−µ

} {
[zN−`−k]

d`−t−µK`

dz`−t−µ

}

=
∑

k≤`−t−µ
(−1)k

(
`− t− µ

k

)
(−1)`−t−µ

(t+ `)(`−t−µ)
(−2`+µ

r

)
(N − t+ 1)

(
N−t

`−t−µ+r

)∣∣∣∣∣
r=N−`−k

.
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Collecting the pieces,

[zN−`](1− z)−t+1I(z)
(t+ 1)`−t

(−1)`−t

= (−1)N−t
`−1∑
j=1

(t+ 1)(j−1)(j − 1)`−t
(N + 2)(j)

(
j − `
N − `

)

+ (−1)`−t
(t+ 1)(`−1)

(N + 2)(`−1)

`−t∑
µ=0

(
`− t
µ

)
(`− 1)µ(t+ `)(`−t−µ)

×
∑

k≤`−t−µ
(−1)k

(
`− t− µ

k

) (−2`+µ
N−`−k

)
(N − t+ 1)

(
N−t
µ+k

) .
So, since(
−a
b

)
= (−1)b

(
a+ b− 1

a− 1

)
,

(t+ 1)(`−1)(t+ `)(`−t−µ)

(t+ 1)(`−t) =
(2`− µ− 1)!

`!
,

equation (63) becomes

(70)

p(N,~̀; 2) =
N
∏
j `j !

(N)`

×

(−1)N+`
`−1∑
j=1

(t+ 1)(j−1)(j − 1)`−t
(t+ 1)(`−t)(N + 2)(j)

(
N − j − 1

`− j − 1

)

+
1

`!(N + 2)(`−1)(N − t+ 1)

×
`−t∑
µ=0

(
`− t
µ

)
(`− 1)µ

`−t∑
ν=µ

(
`− t− µ
`− t− ν

)
(N + `− ν − 1)2`−µ−1(

N−t
ν

)
 ;

ν in the bottom sum comes from substitution ν = k + µ in (69). Changing
the order of summation, the double sum above equals

(71)
(`− t)!
(N − `)!

`−t∑
ν=0

(N + `− ν − 1)!

(`− t− ν)!

1(
N−t
ν

) ν∑
µ=0

(
`− 1

µ

)(
N − `
ν − µ

)

=
(`− t)!
(N − `)!

`−t∑
ν=0

(N + `− ν − 1)!

(`− t− ν)!

(
N−1
ν

)(
N−t
ν

) .
Let Σ(N, `, t) denote the sum over j in (70).

Lemma 5.4. We have

(72) Σ(N, `, t) =
(N − 1)t−2 (`− t)!

(t− 2)!(N + t)(`−t+1)
.
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Proof. We confirmed this conjecture via the powerful Gosper-Zeilberger al-
gorithm, see Chapters 5 and 6 of [23], Nemes et al. [20], Wilf and Zeilberger
[33]. Given ∆ ≥ 0, introduce a function of t ≥ 2, defined by

S(t) =
t−1+∆∑
j=1

(t+ 1)(j−1)(j − 1)∆

(t+ 1)(∆)(N + 2)(j)

(
N − j − 1

t+ ∆− j − 1

)
.

The non-zero summands are those for j ∈ [∆ + 1, t− 1 + ∆]. We can extend
summation to j ∈ [1,∞), since the last binomial is zero for j ≥ t + ∆. We
need to show that

(73) S(t) = S∗(t) :=
(N − 1)t−2∆!

(t− 2)!(N + t)(∆+1)
.

To do so, first we compute

S∗(t)

S∗(t− 1)
=
β(t)

α(t)
,

α(t) := (t− 2)(N + t+ ∆), β(t) := (N − t+ 2)(N + t− 1).

Next, let F (t, j) stand for the j-term in the series S(t). Introduce the
“partner” sequence G(t, j) (which again for each t is 0 for all but finitely
many j) such that

(74) G(t, j)−G(t, j − 1) = α(t)F (t, j)− β(t)F (t− 1, j), j ≥ ∆ + 1,

and G(t,∆) = 0.
The equation (73) will be proved if we demonstrate that G(t, j) = 0 for j

large enough.
Such a sequence G(t, j) can be found either by Gosper’s algorithm, in-

terpreted by Doron Zeilberger’s Maple package EKHAD [35], or without
Gosper’s algorithm as we show below.

Using (74) and the initial condition and G(t,∆) = 0, we compute by hand
and by Maple that

G(t,∆ + 1) =− (∆ + 1)!(∆ + 2t− 2)

(N + 2)(∆+1)

(
N −∆− 2

t− 3

)
,

G(t,∆ + 2) =− (∆ + 2)!(∆ + 2t− 2)(t+ ∆ + 1)

(N + 2)(∆+2)

(
N −∆− 3

t− 4

)
,

G(t,∆ + 3) =− (∆ + 3)!(∆ + 2t− 2)(t+ ∆ + 2)2

2(N + 2)(∆+3)

(
N −∆− 4

t− 5

)
.

The evidence is unmistakable: it must be true that for all u ≥ 1

(75) G(t,∆ + u) = −
(∆ + u)!(∆ + 2t− 2)

(
t+∆+u−1

u−1

)
(N + 2)(∆+u)

(
N −∆− u− 1

t− u− 2

)
.

Sure enough, the inductive step based on the recurrence (74) is easily carried
out with a guided assistance of Maple. It remains to notice that the last
binomial coefficient is zero for u > t− 2. �
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Now we are in a position to announce the main result of this section.

Theorem 5.5. We have the identity

(76) p(N, ~̀; 2) =
(N − `)!

∏
j `j !

(N − 1)! (N + t)

[
(−1)N+`

(
N−1
t−2

)(
N+`
`−t
)

+
(N + t)(N + 1)`+1

(N − t+ 1)(N + `)! (`)t

`−t∑
ν=0

(N + `− ν − 1)!(N − 1)ν
(`− t− ν)!(N − t)ν

]
.

Proof. Combining (71) and (72), we transform (70) into (76). �

The outside factor and the first term inside the square brackets in (76)
are exactly those in the identity (57) proved by Bernardi et al. [3]. The

second inside term, a sum of `− t+ 1 terms, times
(N+t)(N+1)`+1

(N−t+1)(N+`)! (`)t
, is quite

different in appearance from its sum counterpart in (57). For ` − t ≤ 5,
Maple confirms that the rational functions given by the sums in (57) and in
(76) are identical; we did not try to prove equality in general.

A reviewer remarked that the equivalence of the two sums can be proved
“hypergeometrically: in hypergeometric terms the sum is a balanced 4F3-
series; one applies one of Whipple’s transformation formulas; there is some
cancellation; then one applies the Pfaff-Saalschütz summation”.

6. Probability that σ blocks the elements of [`]

We say that the elements of [`] are blocked in a permutation s of [N ] if
in every cycle of s (1) no two elements of [`] are neighbors, and (2) each
element from [`] has a neighbor from [N ] \ [`].

Let p(N, `; k) denote the probability of the event that σ blocks the el-
ements of [`]. In this final section, we are going to prove the following
theorem.

Theorem 6.1. For all positive integers ` and k, the formula

(77) p(N, `; k) =

(
N−`
`

)(
N
`

) + (−1)k+1

(
N−`−1
`−1

)
(N − 1)k−1

(
N
`

) .
holds.

Proof. Let A(`) denote the set of all permutations that block the elements
of [`] and let A(~ν, `) = {s ∈ A(`) : ~ν(s) = ~ν}, Q(~ν, `) = |A(~ν, `)|. To
evaluate Q(~ν, `), introduce the non-negative integers ar,j , br,j that stand for
the numbers of elements from [`] and [N ] \ [`] in the j-th cycle of length
r, (j ≤ νr), and let a and b denote the sequences of the numbers ar,j and
br,j , in increasing order of the indices r, and then in increasing order of the



PRODUCT OF CYCLES 33

indices j. Then

(78)

ar,j + br,j = r,

br,j > 0,∑
r, j≤νr

ar,j =`,
∑
r, j≤νr

br,j = N − `.

For ar,j > 0, the number of admissible cycles with parameters ar,j , br,j is

(79) c(ar,j , br,j) := (ar,j − 1)! br,j !

(
br,j − 1

ar,j − 1

)
= (br,j − 1)!ar,j !

(
br,j
ar,j

)
.

The last expression works for ar,j = 0 as well.
Indeed (ar,j − 1)! is the total number of directed cycles formed by ar,j

elements from [`]; br,j ! is the total number of ways to linearly order br,j
elements from [N ] \ `, and

(br,j−1
ar,j−1

)
is the total number of ways to break

any such br,j-long sequence into ar,j blocks of positive lengths to be fitted
between ar,j cyclically arranged elements from [`], starting with the smallest
element among them and moving in the cycle’s direction, say.

Therefore

(80)

Q(~ν, `) = (N − `)! `!
∑

a,b meet
(??),(??),(??)

∏
r≥1

1

νr!

∏
j≤νr

c(ar,j , br,j)

ar,j ! br,j !

= (N − `)! `! [w`]
∏
r≥1

1

νr!

 ∑
b>0, a+b=r

1

b

(
b

a

)
wa

νr

.

Having found Q(~ν, `), we turn to p(N, `, k), the probability that σ blocks
the elements of [`]. Using (7), the equality ν =

∑
r νr, and (80), we obtain

χλ
∗
(A(~ν, `)) = (−1)λ

1
(N − `)! `!

× [ξλ1w`]
ξ

1− ξ
∏
r

1

νr!

−(1− ξr)

 ∑
b>0,
a+b=r

1

b

(
b

a

)
wa



νr

.

This identity implies

(81) χλ
∗
(A(`)) = (−1)λ

1
(N − `)! `!

× [ξλ1w`]
ξ

1− ξ
∑
~ν:

1ν1+2ν2+···=N

∏
r

1

νr!

−(1− ξr)

 ∑
b>0,
a+b=r

1

b

(
b

a

)
wa



νr

.
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The expression in the second line of (81) equals

[ξλ1w`xN ]
ξ

1− ξ
∑
~ν≥0

∏
r

(xr)νr

νr!

−(1− ξr)

 ∑
b>0, a+b=r

1

b

(
b

a

)
wa

νr

= [ξλ1w`xN ]
ξ

1− ξ
∏
r

∑
νr≥0

1

νr!

−xr(1− ξr)
 ∑
b>0, a+b=r

1

b

(
b

a

)
wa

νr

= [ξλ1w`xN ]
ξ

1− ξ
∏
r

exp

−xr(1− ξr)
 ∑
b>0, a+b=r

1

b

(
b

a

)
wa


= [ξλ1w`xN ]

ξ

1− ξ
exp

−∑
r≥1

[xr − (xξ)r]

 ∑
b>0, a+b=r

1

b

(
b

a

)
wa

 .
Since ∑

r≥1

yr
∑

b>0, a+b=r

1

b

(
b

a

)
wa =

∑
b>0

yb

b

∑
a

(
b

a

)
(yw)a

=
∑
b>0

yb

b
(1 + yw)b =

∑
b>0

[y(1 + yw)]b

b

= log
1

1− y(1 + yw)
,

the RHS in (82) becomes

[ξλ1w`xN ]
ξ

1− ξ
1− x(1 + xw)

1− xξ(1 + xξw)

=[ξλ1xN ]
ξ(1− x)

(1− ξ)(1− xξ)
[w`]

1− x2

1−xw

1− (xξ)2

1−xξw

=[ξλ1xN ]
ξ(1− x)

(1− ξ)(1− xξ)

[(
(xξ)2

1− xξ

)`
− x2

1− x

(
(xξ)2

1− xξ

)`−1
]

=[ξλ1xN ]
ξ

1− xξ

(
(xξ)2

1− xξ)

)`−1
x2

1− xξ
(xξ − 1− ξ)

=− [ξλ1xN ]

(
x2`ξ2`−1

(1− xξ)`
+

x2`ξ2`

(1− xξ)`+1

)
=− [ξλ1−2`+1xN−2`](1− xξ)−` − [ξλ1−2`xN−2`](1− xξ)−`−1

=−
(
N − `− 1

`− 1

)
1{λ1=N−1} −

(
N − `
`

)
1{λ1=N}.
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So (81) simplifies, greatly, to

(82) χλ
∗
(A(`)) = (−1)λ

1−1(N − `)! `!

×
[(
N − `− 1

`− 1

)
1{λ1=N−1} +

(
N − `
`

)
1{λ1=N}

]
.

The rest is easy. By (6),

(83) p(N, `; k) =
1

N !

∑
λ∗

(−1)k(λ1−1)

(
N − 1

λ1 − 1

)−k+1

χλ
∗
(A(`)).

Combining this with (82) we conclude that

p(N, `; k) =

(
N−`
`

)(
N
`

) + (−1)k+1

(
N−`−1
`−1

)
(N − 1)k−1

(
N
`

) .
As a partial check,

p(N, `; 1) =

(
N−`
`

)(
N
`

) +

(
N−`−1
`−1

)(
N
`

)
=

(N − `− 1)!(n− `)!
(N − 1)!(N − 2`)!

=
c(`,N − `)
(N − 1)!

,

see (78) and (79). �

Note. The equation (77) shows that limk→∞ p(N, `; k) =
(
N−`
`

)
/
(
N
`

)
, the

probability that the uniformly random permutation blocks [`].
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