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Abstract. We prove generalized versions of some conjectures of Joel
Lewis on the number of alternating permutations avoiding certain pat-
terns. Our main tool is the perhaps surprising observation that a classic
bijection on pattern avoiding permutations often preserves the alternat-
ing property.

1. Introduction

The theory of pattern avoiding permutations has seen tremendous progress
during the last two decades. The key definition is the following. Let k ≤ n,
let p = p1p2 · · · pn be a permutation of length n, and let q = q1q2 · · · qk be
a permutation of length k. We say that p avoids q if there are no k in-
dices i1 < i2 < · · · < ik so that for all a and b, the inequality pia < pib
holds if and only if the inequality qa < qb holds. For instance, p = 2537164
avoids q = 1234 because p does not contain an increasing subsequence of
length four. See [1] for an overview of the main results on pattern avoiding
permutations.

Recently, there has been an interest to extend the study of pattern avoid-
ing permutations to alternating permutations. A permutation p = p1p2 · · · pn
is called alternating if p1 < p2 > p3 < p4 > · · · , that is, if pi < pi+1 if and
only if i is odd. In [2], Joel Brewster Lewis has made a number of interest-
ing conjectures on the numbers An(q) of alternating permutations of length
n that avoid a given pattern q. In particular, he conjectured that for all
positive integers n, the equalities

(1) A2n(1234) = A2n(1243),

and

(2) A2n(12345) = A2n(12354)

hold. In this paper, we prove a general version of these conjectures, showing
that for all n and for all k, the equality

(3) A2n(12 · · · k) = A2n(12 · · · k(k − 1))

holds. We also explain why the same equality does not hold if 2n is replaced
by 2n+1. On the other hand, a slight modification of our method will show
that for all n and for all k, the equality

(4) An(12 · · · k) = An(21 · · · (k − 1)k)
1
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holds. The special case of k = 4, that is, the equality An(1234) = An(2134)
was conjectured by Joel Lewis in [2].

2. A classic bijection

In this section, we review a classic bijection of Julian West that will be
useful for us. We point out that in this section, our permutations do not
have to be alternating. One crucial definition is the following.

Definition 2.1. The rank of an entry of a permutation is the length of the
longest increasing subsequence that ends in that entry.

For instance, in p = 3526174, entries 3, 2, and 1 are of rank one, entries
5 and 4 are of rank two, entry 6 is of rank three, and entry 7 is of rank 4.
It is straightforward to prove that entries of the same rank always form a
decreasing subsequence. It is also easy to see that if a permutation p avoids
the increasing pattern 12 · · · k, then all entries of p have rank k − 1 or less.

For any permutation pattern q, let Sn(q) denote the number of permuta-
tions of length n (or, in what follows, n-permutations) that avoid the pattern
q.

Lemma 2.2. [4] Let k ≥ 3 be an integer. Then for all positive integers n,
the equality Sn(12 · · · k) = Sn(12 · · · k(k − 1)) holds.

Note that in the special case of k = 3, the equality of the lemma reduces
to Sn(123) = Sn(132), and the proof we are going to present below reduces
to the classic Simion-Schmidt bijection [3].

Proof. We construct a bijection f from the set Xn of all 12 · · · k-avoiding
n-permutations to the set Yn of 12 · · · k(k − 1)-avoiding n-permutations.

Let p ∈ Xn. In order to obtain f(p), leave all entries of p that are of
rank k − 2 or less in their place. Rearrange the entries of rank k− 1 of p as
follows. Let P be the set of positions of p in which an entry of rank k − 1
is located, and let R be the set of entries of p that are of rank k − 1. Now
fill the positions of P with the entries in R from left to right, so that each
position i ∈ P is filled with the smallest entry r of R that has not been
placed yet and that is larger than the closest entry of rank k− 2 on the left
of position i. Let f(p) be the obtained permutation. Note that f(p) avoids
12 · · · k(k− 1) since the existence of such a pattern in f(p) would mean that
the last two entries of that pattern were not placed according to the rule
specified above.

It is easy to see that this definition always enables us to create f(p).
Indeed, the very existence of p shows that there is at least one way to assign
the entries of R to the positions in P so that each of these entries will have
rank k − 1 or higher. Putting the smallest eligible entry in the leftmost
available position can only push other entries of R back, which will not
decrease their rank.

Note that if entry pi of p was of rank k − 2 or less, then pi did not move
in the above procedure, and the rank of pi did not change. If pi was of rank
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k − 1, then pi may have moved, and the rank of pi as an entry of f(p) is
k − 1 or higher.

In order to see that f is a bijection, we show that it has an inverse. Let
q ∈ Yn. The unique preimage f−1(q) can then be obtained by keeping all
entries of q that are of rank k−2 or less fixed, and placing all the remaining
entries (whose set is R) in the remaining slots in decreasing order. It is easy
to see that this can always be done, and that in their new positions, each
element of R will have rank k−1. Indeed, fill the available slots from left to
right with available elements of R as follows. In each step, move the largest
element of R that has not been placed yet into the leftmost available slot
j, and move each element of R that has been weakly on the right of j one
notch to the right. Then in each step, each slot i either contains an entry
that is larger than what was in i before, or an entry that was on the left of i
before. Both of these steps result in the new entry in position i having rank
k − 1. �

Example 2.3. Let k = 4. Then f(893624751) = 893624571. Indeed, the
only entries of rank three in 893624751 are 7 and 5, so f rearranges them
so that each spot is filled with the smallest entry larger than the closest entry
of rank two on the left of that spot (in this case, the entry 4).

3. Alternating Permutations

Now we turn our attention to alternating permutations, and prove the
results announced in the introduction.

Theorem 3.1. Let k ≥ 3 be an integer, and let n be an even positive integer.
Then we have An(12 · · · k) = An(12 · · · k(k − 1)).

Proof. We claim that the fact that n is even implies that the bijection f

of Lemma 2.2 preserves the alternating property. In other words, if p is
an alternating permutation of length n that avoids 12 · · · k, then f(p) is an
alternating permutation of length n that avoids 12 · · · k(k − 1), and vice
versa, that is, if q is an alternating permutation of length n that avoids the
pattern 12 · · · k(k − 1), then f−1(q) is an alternating n-permutation that
avoids 12 · · · k.

Let p = p1p2 · · · pn be an alternating, 12 · · · k-avoiding n-permutation,
where n is an even positive integer. Call the entries of p that are larger than
both their neighbors peaks and call the entries of p that are smaller than
both of their neighbors valleys. Let us also say that p1 is a valley and pn is
a peak. It is clear that all entries of p that are of rank k− 1 must be peaks.
Indeed, because n is even, all valleys in p are followed by a larger entry, so a
valley of rank k−1 would have to be followed by a peak of rank k or higher,
which is a contradiction.

Now let us apply the map f of Lemma 2.2 to our permutation p. As we
have seen, that map keeps entries of rank k − 2 or less fixed; it only moves
entries of rank k − 1, which are all peaks. Therefore, in order to prove that
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f(p) is an alternating permutation, it suffices to show that if f displaces
entry pi of p, that entry pi will be a peak in f(p).

So let us assume that f moves the peak entry pi of p to a new position.
As all valleys are fixed by f , that new position is necessarily between two
valleys, say a and b. We need to prove that pi > a and pi > b. (If the new
position of pi is at the very end of f(p), then we only need to prove that
pi > a.)

By definition, pi is larger than the closest entry y of rank k − 2 on the
left of its new position. If a = y, then this means that pi > a. Otherwise, a
is of rank j ≤ k− 3. This implies that a < y, otherwise the rank of a would
be higher than the rank of y. So a < y < pi, and therefore, pi > a again.

Similarly, b < y, otherwise b would be of rank at least k − 1 since y is of
rank k − 2. As pi > y, it follows that pi > b, proving our claim that pi is a
peak in f(p). This implies that f(p) is an alternating permutation, since its
entries in even positions are all peaks.

Now let q be an alternating, 12 · · · k(k−1)-avoiding n-permutation. Con-
sider f−1(q), where f−1 is the inverse of the bijection f : Xn → Yn, as
defined in the proof of Lemma 2.2. As we saw in the proof of that lemma,
f−1(q) is obtained from q by rearranging the entries of q that are of rank
k − 1 or higher in decreasing order. It is easy to see that all these entries
are peaks in q. Indeed, if w were a valley of rank k − 1 or higher in q, then
there would be a increasing subsequence w1w2 · · ·wk−2w in q. If the entry
immediately preceding w is v, then this would mean that w1w2 · · ·wk−2vw

is a 12 · · · k(k − 1)-pattern in q, which is a contradiction.
So f−1 simply permutes some peaks of q among themselves. Therefore,

in order to prove that f−1(q) is alternating, it is again sufficient to prove
that each peak qi that is displaced by f−1 is a peak in its new position. Let
us say that f−1 moves qi into a new position, where its new neighbors will
be s and t. If qi is larger than the old peak entry Q that was between s and
t before, then of course qi is a peak in f−1(q). If not, that means that f−1

moved qi to the right. However, that means that qi must be larger than both
s and t, otherwise one of s and t would have rank k or more in q. Indeed,
qi, which is an entry of rank k − 1, would be on their left in q. That would
be a contradiction, since s and t are not peaks of q, so they are of rank less
than k − 1. �

Example 3.2. Let n = 8, let k = 4, and let p = 47581623. Then the only
entries of rank three in p are 8, 6 and 3. Rearranging them as described
above yields the alternating permutation f(p) = 47561823.

A careful look at the above proof reveals which parts of the argument will
carry over to the case of odd n, and which parts will not. The proof of the
fact that if qi is a peak in q, then f−1 moves qi into a position where qi will be
a peak again, did not use the fact that n was even. So f−1 maps alternating
permutations to alternating permutations, even if n is odd. However, if
n is odd, and p is alternating, and 12 · · · k-avoiding, then f(p) will not be
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alternating if and only if there is a entry of rank k − 1 in p that is not a
peak. It is easy to see that that happens precisely when the last entry of p is
of rank k− 1, like in p = 23154. So we have proved the following Corollary.

Corollary 3.3. Let n be an odd positive integer. Then the inequality

An(12 · · · k) ≥ An(12 · · · k(k − 1))

holds. Furthermore, An(12 · · · k)−An(12 · · · k(k−1)) is equal to the number
of alternating, 12 · · · k-avoiding n-permutations whose last entry is of rank
k − 1.

Finally, we use a slightly modified version of our argument to prove the
following theorem.

Theorem 3.4. Let n be any positive integer. Then for all k, we have

An(12 · · · k) = An(21 · · · k).

Proof. The proof is similar to the proof of Theorem 3.1. First, we construct
a bijection g that proves the equality

Sn(12 · · · k) = Sn(213 · · · k)

for every n. To this end, let us say that an entry of a permutation is of co-
rank i if the longest increasing subsequence starting in that entry has length
i. If p ∈ Xn, then we define g(p) as follows. Let g keep all entries of p that
are of co-rank k−2 or less fixed. Fill the remaining slots with the remaining
entries from right to left, so that in position j, we always put the largest
remaining entry that is smaller than the closest entry of co-rank k−2 on the
right of j. Then g is a bijection from Xn to the set Zn of 213 · · · k-avoiding
permutations of length n as can be proved in a way analogous to the proof
of Lemma 2.2.

Next, we claim that g preserves the alternating property. In order to
prove this, we point out that if p ∈ Xn, then entries of p of co-rank k − 1
are necessarily valleys, since if they were peaks, they would be immediately
preceded by a valley, which would have co-rank at least k, a contradiction.
Note that unlike in the proof of Theorem 3.1, there is no need for parity
restrictions here. The rest of the proof is analogous to that of Theorem
3.1. �

4. Further directions

As we mentioned, there is a large collection of conjectures in [2] claiming
that An(q) = An(q

′) for some patterns q and q′. Some of these conjectures
are for all integers n, some others for integers of a given parity. In many
cases, the corresponding equalities Sn(q) = Sn(q

′) are known to be true. As
the results of this paper show, sometimes the bijection that proves an equal-
ity for all pattern avoiding permutations preserves the alternating property,
and hence can be used to prove the corresponding equality for alternating
permutations. The question is, of course, exactly when we can do this.
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M. Bóna, Department of Mathematics, University of Florida, 358 Little Hall, PO Box
118105, Gainesville, FL 32611–8105 (USA)


