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ABSTRACT. We use an interesting recent result of probabilistic flavor concern-
ing the product of two permutations consisting of one cycle each to find an
explicit formula for the average number of block interchanges needed to sort a
permutation of length n.

1. INTRODUCTION

1.1. The main definition, and the outline of this paper. Let p = pips---pn
be a permutation. A block interchange is an operation that interchanges two blocks
of consecutive entries without changing the order of entries within each block. The
two blocks do not need to be adjacent. Interchanging the blocks p;p;+1 - - - pit, and
DjPj+1 - Pj+b With i + a < j results in the permutation

Pt Pi—-1PjPj+1 ** * Pj+bPita+1 " Pj—1PiPi+1 * * * Pi+aPj+b+1 " " Pn-
For instance, if p = 3417562, then interchanging the block of the first two entries
with the block of the last three entries results in the permutation 5621734.

In this paper, we are going to compute the average number of block interchanges
to sort a permutation of length n. The methods used in the proof are surprising
for several reasons. First, our enumeration problem will lead us to an interesting
question on the symmetric group that is very easy to ask and that is of probabilistic
flavor. Second, this question then turns out to be surprisingly difficult to answer—
the conjectured answer of one of the authors has only recently been proved by
Richard Stanley [7], whose proof was not elementary.

1.2. Earlier Results and Further Definitions. The first significant result on
the topic of sorting by block interchanges is by D. A. Christie [3], who provided a
direct way of determining the number of block interchanges necessary to sort any
given permutation p. The following definition was crucial to his results.

Definition 1. The cycle graph G(p) of the permutation p = p1ps - - - pn is a directed
graph on vertezx set {0,1,--- ,n} and 2n edges that are colored either black or gray
as follows. Set pg = 0.

(1) For 0 <i < n, there is a black edge from p; to p;_1, where the indices are
to be read modulo n + 1, and

(2) For 0 <i<mn, there is a gray edge from i to i + 1, where the indices are to
be read modulo n + 1.
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See Figures 1 and 2 for three examples. Black edges are represented by solid,
thick lines, and gray edges are represented by thin, dotted lines.
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p=1234 p=4213

Figure 1. The graphs G(p) for p = 1234 and p = 4213. One
sees that ¢(G(1234)) = 5 and ¢(G(4213)) = 1.

G(p)

Ficure 2. The graph G(p) for p = 4312. One sees that
¢(G(4312)) = 3.

It is straightforward to show that G(p) has a unique decomposition into edge-
disjoint directed cycles in which the colors of the edges alternate. (Just note that
each vertex has one edge of each color leaving that vertex, and one edge of each
color entering that vertex.) Let ¢(G(p)) be the number of directed cycles in this
decomposition of G(p). The main enumerative result of [3] is the following formula.
In the rest of this paper, permutations of length n will be called n-permutations,
for shortness.

Theorem 1. The number of block interchanges needed to sort the n-permutation
pis n+1fc2(G(p))_

Note that in particular this implies that n+1 and ¢(G(p)) are always of the same
parity. Christie has also provided an algorithm that sorts p using ”H%(G(p)) block
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interchanges. As the identity permutation is the only n-permutation that takes zero
block interchanges to sort, it is the only n-permutation p satisfying ¢(G(p)) = n+1.

Theorem 1 shows that in order to find the average number A, of block inter-
changes needed to sort an n-permutation, we will need the average value of ¢(G(p))
for such permutations. The following definition [4] will be useful.

Definition 2. The Hultman number Sy (n, k) is the number of n-permutations p
satisfying c¢(G(p)) = k.
The first few Hultman numbers are shown below. The first row assumes n = 1,

the second row assumes n = 2, and so on. The kth element of the nth row is the
value Sy (n, k).

e (0,1

1,01

e 0,5 0,1

e 8,0,150,1

e 0,84,0,35,0, 1.

So the Hultman numbers are somewhat analogous to the signless Stirling num-
bers of the first kind that count n-permutations with & cycles. The name Hultman
numbers is justified as Axel Hultman took the initiative in studying these numbers
in his master’s thesis [3].

This is a good place to point out that in this paper, we will sometimes discuss
cycles of the permutation p in the traditional sense, which are not to be confused
with the directed cycles of G(p), counted by ¢(G(p)). Following [4], the number
of cycles of the permutation p will be denoted by ¢(I'(p)). Indeed, the cycles of a
permutation p are equivalent to the directed cycles of the graph I'(p) in which there
is an edge from 4 to j if p(i) = j. For instance, if p = 1234, then ¢(I'(p)) = 4, while
c(G(p)) = 5.

The following recent theorem of Doignon and Labarre [4] brings the Hultman
numbers closer to the topic of enumerating permutations according to their cycle
structure (in the traditional sense). Let S, denote the symmetric group of degree
n. At this point, we would like to emphasize that we will multiply permutations
from left to right. That is, in a product pg, we first apply p, and then gq.

Theorem 2. The Hultman number Sy(n,k) is equal to the number of ways to
obtain the cycle (12---n(n + 1)) € Sp+1 as a product gr of permutations, where
q € Snp+1 1s any cycle of length n + 1, and the permutation r € Sp41 has exvactly k
cycles, that is ¢(T'(r)) = k.

We note that in [4], permutations are multiplied right-to-left, and so Theorem
2 is proved for products in which we first apply permutation r, then the cyclic
permutation gq. However, this is clearly equivalent to the above version of the
Theorem, since a permutation and its inverse have the same cycle structure.

2. OUR MAIN RESULT

The following immediate consequence of Theorem 2 is more suitable for our
purposes.

Corollary 1. The Hultman number Sg(n,k) is equal to the number of (n + 1)-
cycles q so that the product (12 ---n(n+1))q is a permutation with exzactly k cycles,
that is, ¢(T((12---n(n + 1))q) = k.
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Proof. If (12---n(n + 1))g = w, where w has k cycles, and ¢ is an (n + 1)-cycle,
then multiplying both sides of the last equation by ¢! from the right, we get the
equation

(12---n(n+1)) =wqg™*.

The claim of the Corollary is now immediate from Theorem 2, since ¢~ is a cycle

of length n + 1. |

Example 1. For any fized n, we have Sy (n,n+1) =1 since ¢(G(p)) =n+1 if and
only if p is the identity permutation. And indeed, there is exactly one (n+ 1)-cycle
(in fact, one permutation) g € Sp41 so that (12..---n(n + 1))q has n + 1 cycles,
namely ¢ = (12---n(n+ 1))~ = (1(n + )n---2).

In other words, finding the average of the numbers ¢(G(p)) over all n-permutations
p is equivalent to finding the average of the numbers ¢(I'((12- - -n(n + 1))q), where
q is an (n + 1)-cycle.

Let us consider the product s = (12---n)z, where z is a cycle of length n. Let
us insert the entry n 4+ 1 into z to get the permutation z’ so that n + 1 is inserted
between two specific entries a and b in the following sense.

z(i) if i ¢ {a,n + 1},
2'(i)=<{ n+1ifi=a, and
bifi =n+1.

See Figure 2 for an illustration.

a a
z zZ
b n+1
b

FicuRrE 3. How 2’ is obtained from z.

The following proposition is the first step towards describing how the Hultman
numbers grow. It could be deduced from standard facts related to the product of
a cycle and a transposition that are present in various textbooks, at least at the
level of exercises. However, we will include a proof in order to keep the discussion
self-contained.
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Proposition 1. Let a, b, and z' be defined as above, and let s' = (12--- (n+1))z".
Then we have

c¢(T'(s)) —1if2<a, and a — 1 and z(1) are not in the same cycle of s,
e(T(s") =< ¢(T(s))+1if 2<a, and a— 1 and 2(1) are in the same cycle of s,
c(I'(s))+1ifa=1.

Proof. Let us assume first that @ > 2, and that a — 1 is in a cycle C; of s, and z(1)
is in a different cycle Cy of s. Let C; = ((a —1)b---) and let Cy = (2(1)---n).
After the insertion of n + 1 into z, the obtained permutation s’ = (12---(n + 1))z’
sends @ — 1 to n + 1, then n + 1 to z(1), then leaves the rest of Cy unchanged till
its last entry. Then it sends n back to z'(n + 1) = b, from where it continues with
the rest of C; with no change. So in s, the cycles C; and C5 are united, the entry
n + 1 joins their union, and there is no change to the other cycles of s. See Figure
4 for an illustration.

a-1

n+1

Ficure 4. If a — 1 and z(1) are in different cycles of s, those
cycles will turn into one.

Let us now assume that a > 2, and that @ — 1 and z(1) are both in the same
cycle C of s. Then C = ((a —1)b---nz(1)---). After the insertion of n + 1 into z,
the obtained permutation s’ = (12..---(n+ 1)z’ sends a —1 to n+ 1, then n+ 1 to
z(1), cutting off the part of C' that was between a — 1 and n. So C is split into two
cycles, the cycle C' = ((a — 1)(n + 1)z(1) ---) and the cycle C" = (b---n). Note
that s'(n) = b since z'(n + 1) = b. See Figure 5 for an illustration.

Finally, if a = 1, then s'(n + 1) = (n + 1), so the entry n + 1 forms a 1-cycle of
s', and the rest of the cycles of s do not change. d

Let T'C,, denote the set of ordered pairs (z,y) of n-permutations that consist of
one n-cycle each. Then T'C), has (n — 1)!? elements. Let a,, be the average number
of cycles of xy, where (x,y) ranges the elements of T'C,.

As Proposition 1 shows, inserting n+1 into a position of z will sometimes decrease
and sometimes increase the number of cycles of the product s’. The question is, of
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FIGURE 5. If a—1 and z(1) are in the same cycle of s, that cycle
will split into two cycles.

course, how many times will an increase and how many times will a decrease occur.
In light of Proposition 1, this is the same question as asking how often the entries
z(1) and a — 1 are in the same cycle of s. Furthermore, since z is just an arbitrary
n-cycle, and a — 1 is an arbitrary element of a fixed n-cycle, this is equivalent to
the following question.

Question 1. Let i and j be two fized elements of the set [n] = {1,2,--- ,n}. Select
an element (x,y) of TCy, at random. What is the probability that the product xy
contains i and j in the same cycle?

The first author of this article has conjectured that the answer to this question
was 1/2 for odd n. This conjecture was recently proved by Richard Stanley [7],
who also settled the question for even values of n.

Theorem 3. [7] Let i and j be two fized, distinct elements of the set [n], where
n > 1. Let (x,y) be a randomly selected element of TCy,. Let p(n) be the probability
that i and j are in the same cycle of xy. Then
Lif n is odd, and
p(n) —{ i :

2 . -
3 = m Zf’fL 15 even.

It is now not difficult to describe how the average of the Hultman numbers grow.
Let a,, be the average number of cycles in all permutations of the set {zy|(z,y) €
TCy}. (Theorem 2 shows that the a,, is alsothe average value of Spy(n—1, k), taken
for all (n — 1)! permutations of length n — 1.)

Lemma 1. Let n > 1. Then the numbers a,, grow as follows.
(1) If n =2m + 2, then we have a,, = a,,—1 + ﬁ,

_ B T )
(2) If n=2m+ 1, then we have ap = an_1 + —5 —

m(m+1)

Proof. (1) We apply Proposition 1, with n replaced by n — 1, which is an odd
number. So z' is a cycle of length n obtained from a cycle z of length n —1
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through the insertion of the maximal element n into one of n — 1 possible
positions. If a # 1, then a — 1 and z(1) are equally likely to be in the
same cycle or not in the same cycle of s. Therefore, an increase of one or
a decrease of one in ¢(G(s)) is equally likely. If, on the other hand, a = 1,
which occurs in 1/(n — 1) of all cases, then ¢(G(s)) increases by one. So

n—2 1 1

—lan71+n—1(a" 1—|—1)—an 1+j

(2) We again apply Proposition 1, with n replaced by n — 1, which is now an
even number, namely n—1 = 2m. If a # 1, which happensin (n—2)/(n—1)
of all cases then the probability of a—1 and z(1) falling into the same cycle

of s is 2 3 by Theorem 3. By Proposition 1,

Ay =

~ - 2)(n+1) =327 @m- 1)(m+1
in these cases ¢(G(s)) grows by one. If @ = 1, which occurs in 1/(n — 1) of
all cases, then ¢(G(s)) always grows by one. So

n—2 (1 1

" F?T<§‘@m—nm+n>“““”)
n—2 (1 1

+ n_1'<§+(2m—1)(m+1)>(a”1_1)

1

n—1

_|_

(an—l + ]-)7

which is equivalent to the statement of the lemma as can be seen after
routine rearrangements.
d

We are now in position to state and prove our explicit formula for a,.
Theorem 4. For all positive integers n, we have

1 nmly
= ey T T

Proof. (of Theorem 4) The statement is a direct consequence of Lemma 1 if we

note the telescoping sum Zf 1 i(H—l) = 1— -5 obtained when summing the values
computed in the second part of Lemma, 1. O
Note that it is well-known that on average, an n-permutation has Y. , % cy-

cles. This is the average value of ¢(I'(p)) for a randomly selected n-permutation.
Theorem 4 shows that a,, differs from this by about 1/n.

Finally, our main goal is easy to achieve.
Theorem 5. The average number of block interchanges needed to sort an n-permutation
is

1 1
= Tr2)/2] — Dlieat

5 .
Proof. By Theorem 2 and Theorem 4, the average value of ¢(G(p)) over all permu-
tations p of length n is ant1 = [rygy7ar + 2iet 7o Our claim now immediately
follows from Theorem 1. d

b, =

As the sum of the harmonic series y ;" | % approaches logn as n goes to infinity,
the average number of block interchanges needed to sort an n-permutation is close
to (n —logmn)/2.
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3. REMARKS AND FURTHER DIRECTIONS

Richard Stanley’s proof of Theorem 3 is not elementary. It uses symmetric
functions, exponential generating functions, integrals, and a formula of Boccara [1].
A more combinatorial proof of the stunningly simple answer for the case of odd n
would still be interesting.

As pointed out by Richard Stanley [8], there is an alternative way to obtain the
result of Theorem 4 without using Theorem 3, but that proof in turn uses symmetric
functions and related machinery. It is shown in Exercises 69(a) and 69(c) of [9] that

L(n-1)/2]

1 N
(1) Po(q) = ch(r(w(m...n)) = W Z c(n+1,n—2i)g" %,
w 2 =0

where, as usual, ¢(n, k) is a signless Stirling number of the first kind, that is, the
number of permutations of length n with &k cycles, w ranges over all (n —1))! cycles
of length n in the symmetric group of degree n, and w(12- - - n) denotes the product
of w and (12---n).

Now a,, can be computed by considering P} (1), which in turn can be computed
by considering the well-known identity

n+1
Fpii(@) =) cln+1,k)z* =a(z+1)-- (z +n),
k=1
and then evaluating F}, (1) + F,_,(—1).

The present paper provides further evidence that the cycles of the graph G(p)
have various enumerative properties that are similar to the enumerative properties
of the graph I'(p), that is, the cycles of the permutation p. This raises the question
as to which well-known properties of the Stirling numbers, such as unimodality,
log-concavity, real zeros property, hold for the Hultman numbers as well. (See for
instance Chapter 8 of [2] for definitions and basic information on these properties.)
A simple modification is necessary since Sy (n,k) = 0 if n and k are of the same
parity. So let

_ ) Xeyerc, ¢“T@)/2 if p is even
Onla) = (c(@(@y)+1)/2 if p is odd.

(z.y)eTC, 4

While the coefficients of P,(¢) are all the Hultman numbers Sg(n — 1,1),
Su(n—1,2), -+ ,Su(n—1,n—1), the coefficients of @,,(¢) are the nonzero Hultman
numbers Sg(n — 1, k).

Clearly, Q,(q) = P,(¢?) if n is even, and Q,,(q) = ¢P,(¢?) if n is odd. However,
Exercise 69(b) of [9] shows that all roots of P,(g) have real part 0. Hence the roots
of @, (q) are all real and non-positive, from which the log-concavity and unimodality
of the coefficients of @, (q) follows. This raises the question of whether there is a
combinatorial proof for the latter properties, possibly along the lines of the work
of Bruce Sagan [6] for the Stirling numbers of both kinds. Perhaps it is useful to
note that (1) and Theorem 2 imply that

n+2\ - _ .
SH(n,k):{ C(n+2,k>/(2 )lfTL leOdd,

0if n — k is even.
Finally, to generalize in another direction, we point out that it is very well-
known (see, for example, Chapter 4 of [2]), that if we select a n-permutation p at
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random, and ¢ and j are two fixed, distinct positive integers at most as large as n,
then the probability that p contains i and j in the same cycle is 1/2. Theorem 3
shows that if n is odd, then the multiset {zy|(z,y) € T'C,} behaves just like the
set S, of all permutations in this aspect. This raises the question whether there
are other naturally defined subsets (or multisets) of n-permutations in which this
phenomenon occurs.
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