
THE AVERAGE NUMBER OF BLOCK INTERCHANGESNEEDED TO SORT A PERMUTATION AND A RECENTRESULT OF STANLEYMIKL�OS B�ONA1 AND RYAN FLYNN2Abstra
t. We use an interesting re
ent result of probabilisti
 
avor 
on
ern-ing the produ
t of two permutations 
onsisting of one 
y
le ea
h to �nd anexpli
it formula for the average number of blo
k inter
hanges needed to sort apermutation of length n. 1. Introdu
tion1.1. The main de�nition, and the outline of this paper. Let p = p1p2 � � � pnbe a permutation. A blo
k inter
hange is an operation that inter
hanges two blo
ksof 
onse
utive entries without 
hanging the order of entries within ea
h blo
k. Thetwo blo
ks do not need to be adja
ent. Inter
hanging the blo
ks pipi+1 � � � pi+a andpjpj+1 � � � pj+b with i+ a < j results in the permutationp1 � � � pi�1pjpj+1 � � � pj+bpi+a+1 � � � pj�1pipi+1 � � � pi+apj+b+1 � � � pn:For instan
e, if p = 3417562, then inter
hanging the blo
k of the �rst two entrieswith the blo
k of the last three entries results in the permutation 5621734.In this paper, we are going to 
ompute the average number of blo
k inter
hangesto sort a permutation of length n. The methods used in the proof are surprisingfor several reasons. First, our enumeration problem will lead us to an interestingquestion on the symmetri
 group that is very easy to ask and that is of probabilisti

avor. Se
ond, this question then turns out to be surprisingly diÆ
ult to answer{the 
onje
tured answer of one of the authors has only re
ently been proved byRi
hard Stanley [7℄, whose proof was not elementary.1.2. Earlier Results and Further De�nitions. The �rst signi�
ant result onthe topi
 of sorting by blo
k inter
hanges is by D. A. Christie [3℄, who provided adire
t way of determining the number of blo
k inter
hanges ne
essary to sort anygiven permutation p. The following de�nition was 
ru
ial to his results.De�nition 1. The 
y
le graph G(p) of the permutation p = p1p2 � � � pn is a dire
tedgraph on vertex set f0; 1; � � � ; ng and 2n edges that are 
olored either bla
k or grayas follows. Set p0 = 0.(1) For 0 � i � n, there is a bla
k edge from pi to pi�1, where the indi
es areto be read modulo n+ 1, and(2) For 0 � i � n, there is a gray edge from i to i+1, where the indi
es are tobe read modulo n+ 1.1Resear
h supported by the National S
ien
e Foundation, the National Se
urity Agen
y, andthe Howard Hughes Medi
al Institute.2 Resear
h supported by the Howard Hughes Medi
al Institute.1



2 BONA AND FLYNNSee Figures 1 and 2 for three examples. Bla
k edges are represented by solid,thi
k lines, and gray edges are represented by thin, dotted lines.
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Figure 1. The graphs G(p) for p = 1234 and p = 4213. Onesees that 
(G(1234)) = 5 and 
(G(4213)) = 1.
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Figure 2. The graph G(p) for p = 4312. One sees that
(G(4312)) = 3.It is straightforward to show that G(p) has a unique de
omposition into edge-disjoint dire
ted 
y
les in whi
h the 
olors of the edges alternate. (Just note thatea
h vertex has one edge of ea
h 
olor leaving that vertex, and one edge of ea
h
olor entering that vertex.) Let 
(G(p)) be the number of dire
ted 
y
les in thisde
omposition of G(p). The main enumerative result of [3℄ is the following formula.In the rest of this paper, permutations of length n will be 
alled n-permutations,for shortness.Theorem 1. The number of blo
k inter
hanges needed to sort the n-permutationp is n+1�
(G(p))2 .Note that in parti
ular this implies that n+1 and 
(G(p)) are always of the sameparity. Christie has also provided an algorithm that sorts p using n+1�
(G(p))2 blo
k
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hanges. As the identity permutation is the only n-permutation that takes zeroblo
k inter
hanges to sort, it is the only n-permutation p satisfying 
(G(p)) = n+1.Theorem 1 shows that in order to �nd the average number An of blo
k inter-
hanges needed to sort an n-permutation, we will need the average value of 
(G(p))for su
h permutations. The following de�nition [4℄ will be useful.De�nition 2. The Hultman number SH(n; k) is the number of n-permutations psatisfying 
(G(p)) = k.The �rst few Hultman numbers are shown below. The �rst row assumes n = 1,the se
ond row assumes n = 2, and so on. The kth element of the nth row is thevalue SH(n; k).� 0, 1� 1, 0, 1� 0, 5, 0, 1� 8, 0, 15, 0, 1� 0, 84, 0, 35, 0, 1.So the Hultman numbers are somewhat analogous to the signless Stirling num-bers of the �rst kind that 
ount n-permutations with k 
y
les. The name Hultmannumbers is justi�ed as Axel Hultman took the initiative in studying these numbersin his master's thesis [5℄.This is a good pla
e to point out that in this paper, we will sometimes dis
uss
y
les of the permutation p in the traditional sense, whi
h are not to be 
onfusedwith the dire
ted 
y
les of G(p), 
ounted by 
(G(p)). Following [4℄, the numberof 
y
les of the permutation p will be denoted by 
(�(p)). Indeed, the 
y
les of apermutation p are equivalent to the dire
ted 
y
les of the graph �(p) in whi
h thereis an edge from i to j if p(i) = j. For instan
e, if p = 1234, then 
(�(p)) = 4, while
(G(p)) = 5.The following re
ent theorem of Doignon and Labarre [4℄ brings the Hultmannumbers 
loser to the topi
 of enumerating permutations a

ording to their 
y
lestru
ture (in the traditional sense). Let Sn denote the symmetri
 group of degreen. At this point, we would like to emphasize that we will multiply permutationsfrom left to right. That is, in a produ
t pq, we �rst apply p, and then q.Theorem 2. The Hultman number SH(n; k) is equal to the number of ways toobtain the 
y
le (12 � � �n(n + 1)) 2 Sn+1 as a produ
t qr of permutations, whereq 2 Sn+1 is any 
y
le of length n+ 1, and the permutation r 2 Sn+1 has exa
tly k
y
les, that is 
(�(r)) = k.We note that in [4℄, permutations are multiplied right-to-left, and so Theorem2 is proved for produ
ts in whi
h we �rst apply permutation r, then the 
y
li
permutation q. However, this is 
learly equivalent to the above version of theTheorem, sin
e a permutation and its inverse have the same 
y
le stru
ture.2. Our Main ResultThe following immediate 
onsequen
e of Theorem 2 is more suitable for ourpurposes.Corollary 1. The Hultman number SH(n; k) is equal to the number of (n + 1)-
y
les q so that the produ
t (12 � � �n(n+1))q is a permutation with exa
tly k 
y
les,that is, 
(�((12 � � �n(n+ 1))q) = k.



4 BONA AND FLYNNProof. If (12 � � �n(n + 1))q = w, where w has k 
y
les, and q is an (n + 1)-
y
le,then multiplying both sides of the last equation by q�1 from the right, we get theequation (12 � � �n(n+ 1)) = wq�1:The 
laim of the Corollary is now immediate from Theorem 2, sin
e q�1 is a 
y
leof length n+ 1. �Example 1. For any �xed n, we have SH (n; n+1) = 1 sin
e 
(G(p)) = n+1 if andonly if p is the identity permutation. And indeed, there is exa
tly one (n+1)-
y
le(in fa
t, one permutation) q 2 Sn+1 so that (12:: � � �n(n + 1))q has n + 1 
y
les,namely q = (12 � � �n(n+ 1))�1 = (1(n+ 1)n � � � 2).In other words, �nding the average of the numbers 
(G(p)) over all n-permutationsp is equivalent to �nding the average of the numbers 
(�((12 � � �n(n+1))q), whereq is an (n+ 1)-
y
le.Let us 
onsider the produ
t s = (12 � � �n)z, where z is a 
y
le of length n. Letus insert the entry n+ 1 into z to get the permutation z0 so that n+ 1 is insertedbetween two spe
i�
 entries a and b in the following sense.z0(i) = 8<: z(i) if i =2 fa; n+ 1g;n+ 1 if i = a, andb if i = n+ 1.See Figure 2 for an illustration.
z z’

n+1

b

a

b

a

Figure 3. How z0 is obtained from z.The following proposition is the �rst step towards des
ribing how the Hultmannumbers grow. It 
ould be dedu
ed from standard fa
ts related to the produ
t ofa 
y
le and a transposition that are present in various textbooks, at least at thelevel of exer
ises. However, we will in
lude a proof in order to keep the dis
ussionself-
ontained.



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY5Proposition 1. Let a, b, and z0 be de�ned as above, and let s0 = (12 � � � (n+1))z0.Then we have
(�(s0)) =8<: 
(�(s))� 1 if 2 � a, and a� 1 and z(1) are not in the same 
y
le of s;
(�(s)) + 1 if 2 � a, and a� 1 and z(1) are in the same 
y
le of s,
(�(s)) + 1 if a = 1:Proof. Let us assume �rst that a � 2, and that a� 1 is in a 
y
le C1 of s, and z(1)is in a di�erent 
y
le C2 of s. Let C1 = ((a � 1)b � � � ) and let C2 = (z(1) � � �n).After the insertion of n+1 into z, the obtained permutation s0 = (12 � � � (n+1))z0sends a� 1 to n+ 1, then n + 1 to z(1), then leaves the rest of C2 un
hanged tillits last entry. Then it sends n ba
k to z0(n+ 1) = b, from where it 
ontinues withthe rest of C1 with no 
hange. So in s0, the 
y
les C1 and C2 are united, the entryn+ 1 joins their union, and there is no 
hange to the other 
y
les of s. See Figure4 for an illustration.
a−1

b

n z(1)
C

C

1

2

n+1Figure 4. If a � 1 and z(1) are in di�erent 
y
les of s, those
y
les will turn into one.Let us now assume that a � 2, and that a � 1 and z(1) are both in the same
y
le C of s. Then C = ((a� 1)b � � �nz(1) � � � ). After the insertion of n+ 1 into z,the obtained permutation s0 = (12:: � � � (n+1)z0 sends a� 1 to n+1, then n+1 toz(1), 
utting o� the part of C that was between a� 1 and n. So C is split into two
y
les, the 
y
le C 0 = ((a � 1)(n + 1)z(1) � � � ) and the 
y
le C 00 = (b � � �n). Notethat s0(n) = b sin
e z0(n+ 1) = b. See Figure 5 for an illustration.Finally, if a = 1, then s0(n+ 1) = (n+ 1), so the entry n+ 1 forms a 1-
y
le ofs0, and the rest of the 
y
les of s do not 
hange. �Let TCn denote the set of ordered pairs (x; y) of n-permutations that 
onsist ofone n-
y
le ea
h. Then TCn has (n� 1)!2 elements. Let an be the average numberof 
y
les of xy, where (x; y) ranges the elements of TCn.As Proposition 1 shows, inserting n+1 into a position of z will sometimes de
reaseand sometimes in
rease the number of 
y
les of the produ
t s0. The question is, of
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Figure 5. If a� 1 and z(1) are in the same 
y
le of s, that 
y
lewill split into two 
y
les.
ourse, how many times will an in
rease and how many times will a de
rease o

ur.In light of Proposition 1, this is the same question as asking how often the entriesz(1) and a� 1 are in the same 
y
le of s. Furthermore, sin
e z is just an arbitraryn-
y
le, and a � 1 is an arbitrary element of a �xed n-
y
le, this is equivalent tothe following question.Question 1. Let i and j be two �xed elements of the set [n℄ = f1; 2; � � � ; ng. Sele
tan element (x; y) of TCn at random. What is the probability that the produ
t xy
ontains i and j in the same 
y
le?The �rst author of this arti
le has 
onje
tured that the answer to this questionwas 1/2 for odd n. This 
onje
ture was re
ently proved by Ri
hard Stanley [7℄,who also settled the question for even values of n.Theorem 3. [7℄ Let i and j be two �xed, distin
t elements of the set [n℄, wheren > 1. Let (x; y) be a randomly sele
ted element of TCn. Let p(n) be the probabilitythat i and j are in the same 
y
le of xy. Thenp(n) = � 12 if n is odd, and12 � 2(n�1)(n+2) if n is even:It is now not diÆ
ult to des
ribe how the average of the Hultman numbers grow.Let an be the average number of 
y
les in all permutations of the set fxyj(x; y) 2TCng. (Theorem 2 shows that the an is alsothe average value of SH (n�1; k), takenfor all (n� 1)! permutations of length n� 1.)Lemma 1. Let n � 1. Then the numbers an grow as follows.(1) If n = 2m+ 2, then we have an = an�1 + 1n�1 ,(2) If n = 2m+ 1, then we have an = an�1 + 1n�1 � 1m(m+1)Proof. (1) We apply Proposition 1, with n repla
ed by n� 1, whi
h is an oddnumber. So z0 is a 
y
le of length n obtained from a 
y
le z of length n� 1



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY7through the insertion of the maximal element n into one of n� 1 possiblepositions. If a 6= 1, then a � 1 and z(1) are equally likely to be in thesame 
y
le or not in the same 
y
le of s. Therefore, an in
rease of one ora de
rease of one in 
(G(s)) is equally likely. If, on the other hand, a = 1,whi
h o

urs in 1=(n� 1) of all 
ases, then 
(G(s)) in
reases by one. Soan = n� 2n� 1an�1 + 1n� 1(an�1 + 1) = an�1 + 1n� 1 :(2) We again apply Proposition 1, with n repla
ed by n� 1, whi
h is now aneven number, namely n�1 = 2m. If a 6= 1, whi
h happens in (n�2)=(n�1)of all 
ases, then the probability of a�1 and z(1) falling into the same 
y
leof s is 12 � 2(n�2)(n+1) = 12 � 1(2m�1)(m+1) by Theorem 3. By Proposition 1,in these 
ases 
(G(s)) grows by one. If a = 1, whi
h o

urs in 1=(n� 1) ofall 
ases, then 
(G(s)) always grows by one. Soan = n� 2n� 1 � �12 � 1(2m� 1)(m+ 1)� (an�1 + 1)+ n� 2n� 1 � �12 + 1(2m� 1)(m+ 1)� (an�1 � 1)+ 1n� 1(an�1 + 1);whi
h is equivalent to the statement of the lemma as 
an be seen afterroutine rearrangements. �We are now in position to state and prove our expli
it formula for an.Theorem 4. For all positive integers n, we havean = 1b(n+ 1)=2
 + n�1Xi=1 1i :Proof. (of Theorem 4) The statement is a dire
t 
onsequen
e of Lemma 1 if wenote the teles
oping sumPti=1 1i(i+1) = 1� 1t+1 obtained when summing the values
omputed in the se
ond part of Lemma 1. �Note that it is well-known that on average, an n-permutation has Pni=1 1i 
y-
les. This is the average value of 
(�(p)) for a randomly sele
ted n-permutation.Theorem 4 shows that an di�ers from this by about 1=n.Finally, our main goal is easy to a
hieve.Theorem 5. The average number of blo
k inter
hanges needed to sort an n-permutationis bn = n� 1b(n+2)=2
 �Pni=2 1i2 :Proof. By Theorem 2 and Theorem 4, the average value of 
(G(p)) over all permu-tations p of length n is an+1 = 1b(n+2)=2
 +Pni=1 1i . Our 
laim now immediatelyfollows from Theorem 1. �As the sum of the harmoni
 seriesPni=1 1i approa
hes logn as n goes to in�nity,the average number of blo
k inter
hanges needed to sort an n-permutation is 
loseto (n� logn)=2.



8 BONA AND FLYNN3. Remarks and Further Dire
tionsRi
hard Stanley's proof of Theorem 3 is not elementary. It uses symmetri
fun
tions, exponential generating fun
tions, integrals, and a formula of Bo

ara [1℄.A more 
ombinatorial proof of the stunningly simple answer for the 
ase of odd nwould still be interesting.As pointed out by Ri
hard Stanley [8℄, there is an alternative way to obtain theresult of Theorem 4 without using Theorem 3, but that proof in turn uses symmetri
fun
tions and related ma
hinery. It is shown in Exer
ises 69(a) and 69(
) of [9℄ that(1) Pn(q) =Xw q
(�(w(12���n)) = 1�n+12 � b(n�1)=2
Xi=0 
(n+ 1; n� 2i)qn�2i;where, as usual, 
(n; k) is a signless Stirling number of the �rst kind, that is, thenumber of permutations of length n with k 
y
les, w ranges over all (n�1))! 
y
lesof length n in the symmetri
 group of degree n, and w(12 � � �n) denotes the produ
tof w and (12 � � �n).Now an 
an be 
omputed by 
onsidering P 0n(1), whi
h in turn 
an be 
omputedby 
onsidering the well-known identityFn+1(x) = n+1Xk=1 
(n+ 1; k)xk = x(x + 1) � � � (x+ n);and then evaluating F 0n+1(1) + F 0n+1(�1).The present paper provides further eviden
e that the 
y
les of the graph G(p)have various enumerative properties that are similar to the enumerative propertiesof the graph �(p), that is, the 
y
les of the permutation p. This raises the questionas to whi
h well-known properties of the Stirling numbers, su
h as unimodality,log-
on
avity, real zeros property, hold for the Hultman numbers as well. (See forinstan
e Chapter 8 of [2℄ for de�nitions and basi
 information on these properties.)A simple modi�
ation is ne
essary sin
e SH(n; k) = 0 if n and k are of the sameparity. So let Qn(q) = ( P(x;y)2TCn q
(�(xy))=2 if n is evenP(x;y)2TCn q(
(�(xy))+1)=2 if n is odd.While the 
oeÆ
ients of Pn(q) are all the Hultman numbers SH(n � 1; 1),SH(n�1; 2); � � � ;SH(n�1; n�1), the 
oeÆ
ients of Qn(q) are the nonzero Hultmannumbers SH(n� 1; k).Clearly, Qn(q) = Pn(q2) if n is even, and Qn(q) = qPn(q2) if n is odd. However,Exer
ise 69(b) of [9℄ shows that all roots of Pn(q) have real part 0. Hen
e the rootsofQn(q) are all real and non-positive, from whi
h the log-
on
avity and unimodalityof the 
oeÆ
ients of Qn(q) follows. This raises the question of whether there is a
ombinatorial proof for the latter properties, possibly along the lines of the workof Bru
e Sagan [6℄ for the Stirling numbers of both kinds. Perhaps it is useful tonote that (1) and Theorem 2 imply thatSH(n; k) = � 
(n+ 2; k)=�n+22 � if n� k is odd,0 if n� k is even.Finally, to generalize in another dire
tion, we point out that it is very well-known (see, for example, Chapter 4 of [2℄), that if we sele
t a n-permutation p at



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY9random, and i and j are two �xed, distin
t positive integers at most as large as n,then the probability that p 
ontains i and j in the same 
y
le is 1=2. Theorem 3shows that if n is odd, then the multiset fxyj(x; y) 2 TCng behaves just like theset Sn of all permutations in this aspe
t. This raises the question whether thereare other naturally de�ned subsets (or multisets) of n-permutations in whi
h thisphenomenon o

urs.
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