
THE AVERAGE NUMBER OF BLOCK INTERCHANGESNEEDED TO SORT A PERMUTATION AND A RECENTRESULT OF STANLEYMIKL�OS B�ONA1 AND RYAN FLYNN2Abstrat. We use an interesting reent result of probabilisti avor onern-ing the produt of two permutations onsisting of one yle eah to �nd anexpliit formula for the average number of blok interhanges needed to sort apermutation of length n. 1. Introdution1.1. The main de�nition, and the outline of this paper. Let p = p1p2 � � � pnbe a permutation. A blok interhange is an operation that interhanges two bloksof onseutive entries without hanging the order of entries within eah blok. Thetwo bloks do not need to be adjaent. Interhanging the bloks pipi+1 � � � pi+a andpjpj+1 � � � pj+b with i+ a < j results in the permutationp1 � � � pi�1pjpj+1 � � � pj+bpi+a+1 � � � pj�1pipi+1 � � � pi+apj+b+1 � � � pn:For instane, if p = 3417562, then interhanging the blok of the �rst two entrieswith the blok of the last three entries results in the permutation 5621734.In this paper, we are going to ompute the average number of blok interhangesto sort a permutation of length n. The methods used in the proof are surprisingfor several reasons. First, our enumeration problem will lead us to an interestingquestion on the symmetri group that is very easy to ask and that is of probabilistiavor. Seond, this question then turns out to be surprisingly diÆult to answer{the onjetured answer of one of the authors has only reently been proved byRihard Stanley [7℄, whose proof was not elementary.1.2. Earlier Results and Further De�nitions. The �rst signi�ant result onthe topi of sorting by blok interhanges is by D. A. Christie [3℄, who provided adiret way of determining the number of blok interhanges neessary to sort anygiven permutation p. The following de�nition was ruial to his results.De�nition 1. The yle graph G(p) of the permutation p = p1p2 � � � pn is a diretedgraph on vertex set f0; 1; � � � ; ng and 2n edges that are olored either blak or grayas follows. Set p0 = 0.(1) For 0 � i � n, there is a blak edge from pi to pi�1, where the indies areto be read modulo n+ 1, and(2) For 0 � i � n, there is a gray edge from i to i+1, where the indies are tobe read modulo n+ 1.1Researh supported by the National Siene Foundation, the National Seurity Ageny, andthe Howard Hughes Medial Institute.2 Researh supported by the Howard Hughes Medial Institute.1



2 BONA AND FLYNNSee Figures 1 and 2 for three examples. Blak edges are represented by solid,thik lines, and gray edges are represented by thin, dotted lines.
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Figure 1. The graphs G(p) for p = 1234 and p = 4213. Onesees that (G(1234)) = 5 and (G(4213)) = 1.
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Figure 2. The graph G(p) for p = 4312. One sees that(G(4312)) = 3.It is straightforward to show that G(p) has a unique deomposition into edge-disjoint direted yles in whih the olors of the edges alternate. (Just note thateah vertex has one edge of eah olor leaving that vertex, and one edge of eaholor entering that vertex.) Let (G(p)) be the number of direted yles in thisdeomposition of G(p). The main enumerative result of [3℄ is the following formula.In the rest of this paper, permutations of length n will be alled n-permutations,for shortness.Theorem 1. The number of blok interhanges needed to sort the n-permutationp is n+1�(G(p))2 .Note that in partiular this implies that n+1 and (G(p)) are always of the sameparity. Christie has also provided an algorithm that sorts p using n+1�(G(p))2 blok



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY3interhanges. As the identity permutation is the only n-permutation that takes zeroblok interhanges to sort, it is the only n-permutation p satisfying (G(p)) = n+1.Theorem 1 shows that in order to �nd the average number An of blok inter-hanges needed to sort an n-permutation, we will need the average value of (G(p))for suh permutations. The following de�nition [4℄ will be useful.De�nition 2. The Hultman number SH(n; k) is the number of n-permutations psatisfying (G(p)) = k.The �rst few Hultman numbers are shown below. The �rst row assumes n = 1,the seond row assumes n = 2, and so on. The kth element of the nth row is thevalue SH(n; k).� 0, 1� 1, 0, 1� 0, 5, 0, 1� 8, 0, 15, 0, 1� 0, 84, 0, 35, 0, 1.So the Hultman numbers are somewhat analogous to the signless Stirling num-bers of the �rst kind that ount n-permutations with k yles. The name Hultmannumbers is justi�ed as Axel Hultman took the initiative in studying these numbersin his master's thesis [5℄.This is a good plae to point out that in this paper, we will sometimes disussyles of the permutation p in the traditional sense, whih are not to be onfusedwith the direted yles of G(p), ounted by (G(p)). Following [4℄, the numberof yles of the permutation p will be denoted by (�(p)). Indeed, the yles of apermutation p are equivalent to the direted yles of the graph �(p) in whih thereis an edge from i to j if p(i) = j. For instane, if p = 1234, then (�(p)) = 4, while(G(p)) = 5.The following reent theorem of Doignon and Labarre [4℄ brings the Hultmannumbers loser to the topi of enumerating permutations aording to their ylestruture (in the traditional sense). Let Sn denote the symmetri group of degreen. At this point, we would like to emphasize that we will multiply permutationsfrom left to right. That is, in a produt pq, we �rst apply p, and then q.Theorem 2. The Hultman number SH(n; k) is equal to the number of ways toobtain the yle (12 � � �n(n + 1)) 2 Sn+1 as a produt qr of permutations, whereq 2 Sn+1 is any yle of length n+ 1, and the permutation r 2 Sn+1 has exatly kyles, that is (�(r)) = k.We note that in [4℄, permutations are multiplied right-to-left, and so Theorem2 is proved for produts in whih we �rst apply permutation r, then the ylipermutation q. However, this is learly equivalent to the above version of theTheorem, sine a permutation and its inverse have the same yle struture.2. Our Main ResultThe following immediate onsequene of Theorem 2 is more suitable for ourpurposes.Corollary 1. The Hultman number SH(n; k) is equal to the number of (n + 1)-yles q so that the produt (12 � � �n(n+1))q is a permutation with exatly k yles,that is, (�((12 � � �n(n+ 1))q) = k.



4 BONA AND FLYNNProof. If (12 � � �n(n + 1))q = w, where w has k yles, and q is an (n + 1)-yle,then multiplying both sides of the last equation by q�1 from the right, we get theequation (12 � � �n(n+ 1)) = wq�1:The laim of the Corollary is now immediate from Theorem 2, sine q�1 is a yleof length n+ 1. �Example 1. For any �xed n, we have SH (n; n+1) = 1 sine (G(p)) = n+1 if andonly if p is the identity permutation. And indeed, there is exatly one (n+1)-yle(in fat, one permutation) q 2 Sn+1 so that (12:: � � �n(n + 1))q has n + 1 yles,namely q = (12 � � �n(n+ 1))�1 = (1(n+ 1)n � � � 2).In other words, �nding the average of the numbers (G(p)) over all n-permutationsp is equivalent to �nding the average of the numbers (�((12 � � �n(n+1))q), whereq is an (n+ 1)-yle.Let us onsider the produt s = (12 � � �n)z, where z is a yle of length n. Letus insert the entry n+ 1 into z to get the permutation z0 so that n+ 1 is insertedbetween two spei� entries a and b in the following sense.z0(i) = 8<: z(i) if i =2 fa; n+ 1g;n+ 1 if i = a, andb if i = n+ 1.See Figure 2 for an illustration.
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Figure 3. How z0 is obtained from z.The following proposition is the �rst step towards desribing how the Hultmannumbers grow. It ould be dedued from standard fats related to the produt ofa yle and a transposition that are present in various textbooks, at least at thelevel of exerises. However, we will inlude a proof in order to keep the disussionself-ontained.



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY5Proposition 1. Let a, b, and z0 be de�ned as above, and let s0 = (12 � � � (n+1))z0.Then we have(�(s0)) =8<: (�(s))� 1 if 2 � a, and a� 1 and z(1) are not in the same yle of s;(�(s)) + 1 if 2 � a, and a� 1 and z(1) are in the same yle of s,(�(s)) + 1 if a = 1:Proof. Let us assume �rst that a � 2, and that a� 1 is in a yle C1 of s, and z(1)is in a di�erent yle C2 of s. Let C1 = ((a � 1)b � � � ) and let C2 = (z(1) � � �n).After the insertion of n+1 into z, the obtained permutation s0 = (12 � � � (n+1))z0sends a� 1 to n+ 1, then n + 1 to z(1), then leaves the rest of C2 unhanged tillits last entry. Then it sends n bak to z0(n+ 1) = b, from where it ontinues withthe rest of C1 with no hange. So in s0, the yles C1 and C2 are united, the entryn+ 1 joins their union, and there is no hange to the other yles of s. See Figure4 for an illustration.
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n+1Figure 4. If a � 1 and z(1) are in di�erent yles of s, thoseyles will turn into one.Let us now assume that a � 2, and that a � 1 and z(1) are both in the sameyle C of s. Then C = ((a� 1)b � � �nz(1) � � � ). After the insertion of n+ 1 into z,the obtained permutation s0 = (12:: � � � (n+1)z0 sends a� 1 to n+1, then n+1 toz(1), utting o� the part of C that was between a� 1 and n. So C is split into twoyles, the yle C 0 = ((a � 1)(n + 1)z(1) � � � ) and the yle C 00 = (b � � �n). Notethat s0(n) = b sine z0(n+ 1) = b. See Figure 5 for an illustration.Finally, if a = 1, then s0(n+ 1) = (n+ 1), so the entry n+ 1 forms a 1-yle ofs0, and the rest of the yles of s do not hange. �Let TCn denote the set of ordered pairs (x; y) of n-permutations that onsist ofone n-yle eah. Then TCn has (n� 1)!2 elements. Let an be the average numberof yles of xy, where (x; y) ranges the elements of TCn.As Proposition 1 shows, inserting n+1 into a position of z will sometimes dereaseand sometimes inrease the number of yles of the produt s0. The question is, of
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Figure 5. If a� 1 and z(1) are in the same yle of s, that ylewill split into two yles.ourse, how many times will an inrease and how many times will a derease our.In light of Proposition 1, this is the same question as asking how often the entriesz(1) and a� 1 are in the same yle of s. Furthermore, sine z is just an arbitraryn-yle, and a � 1 is an arbitrary element of a �xed n-yle, this is equivalent tothe following question.Question 1. Let i and j be two �xed elements of the set [n℄ = f1; 2; � � � ; ng. Seletan element (x; y) of TCn at random. What is the probability that the produt xyontains i and j in the same yle?The �rst author of this artile has onjetured that the answer to this questionwas 1/2 for odd n. This onjeture was reently proved by Rihard Stanley [7℄,who also settled the question for even values of n.Theorem 3. [7℄ Let i and j be two �xed, distint elements of the set [n℄, wheren > 1. Let (x; y) be a randomly seleted element of TCn. Let p(n) be the probabilitythat i and j are in the same yle of xy. Thenp(n) = � 12 if n is odd, and12 � 2(n�1)(n+2) if n is even:It is now not diÆult to desribe how the average of the Hultman numbers grow.Let an be the average number of yles in all permutations of the set fxyj(x; y) 2TCng. (Theorem 2 shows that the an is alsothe average value of SH (n�1; k), takenfor all (n� 1)! permutations of length n� 1.)Lemma 1. Let n � 1. Then the numbers an grow as follows.(1) If n = 2m+ 2, then we have an = an�1 + 1n�1 ,(2) If n = 2m+ 1, then we have an = an�1 + 1n�1 � 1m(m+1)Proof. (1) We apply Proposition 1, with n replaed by n� 1, whih is an oddnumber. So z0 is a yle of length n obtained from a yle z of length n� 1



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY7through the insertion of the maximal element n into one of n� 1 possiblepositions. If a 6= 1, then a � 1 and z(1) are equally likely to be in thesame yle or not in the same yle of s. Therefore, an inrease of one ora derease of one in (G(s)) is equally likely. If, on the other hand, a = 1,whih ours in 1=(n� 1) of all ases, then (G(s)) inreases by one. Soan = n� 2n� 1an�1 + 1n� 1(an�1 + 1) = an�1 + 1n� 1 :(2) We again apply Proposition 1, with n replaed by n� 1, whih is now aneven number, namely n�1 = 2m. If a 6= 1, whih happens in (n�2)=(n�1)of all ases, then the probability of a�1 and z(1) falling into the same yleof s is 12 � 2(n�2)(n+1) = 12 � 1(2m�1)(m+1) by Theorem 3. By Proposition 1,in these ases (G(s)) grows by one. If a = 1, whih ours in 1=(n� 1) ofall ases, then (G(s)) always grows by one. Soan = n� 2n� 1 � �12 � 1(2m� 1)(m+ 1)� (an�1 + 1)+ n� 2n� 1 � �12 + 1(2m� 1)(m+ 1)� (an�1 � 1)+ 1n� 1(an�1 + 1);whih is equivalent to the statement of the lemma as an be seen afterroutine rearrangements. �We are now in position to state and prove our expliit formula for an.Theorem 4. For all positive integers n, we havean = 1b(n+ 1)=2 + n�1Xi=1 1i :Proof. (of Theorem 4) The statement is a diret onsequene of Lemma 1 if wenote the telesoping sumPti=1 1i(i+1) = 1� 1t+1 obtained when summing the valuesomputed in the seond part of Lemma 1. �Note that it is well-known that on average, an n-permutation has Pni=1 1i y-les. This is the average value of (�(p)) for a randomly seleted n-permutation.Theorem 4 shows that an di�ers from this by about 1=n.Finally, our main goal is easy to ahieve.Theorem 5. The average number of blok interhanges needed to sort an n-permutationis bn = n� 1b(n+2)=2 �Pni=2 1i2 :Proof. By Theorem 2 and Theorem 4, the average value of (G(p)) over all permu-tations p of length n is an+1 = 1b(n+2)=2 +Pni=1 1i . Our laim now immediatelyfollows from Theorem 1. �As the sum of the harmoni seriesPni=1 1i approahes logn as n goes to in�nity,the average number of blok interhanges needed to sort an n-permutation is loseto (n� logn)=2.



8 BONA AND FLYNN3. Remarks and Further DiretionsRihard Stanley's proof of Theorem 3 is not elementary. It uses symmetrifuntions, exponential generating funtions, integrals, and a formula of Boara [1℄.A more ombinatorial proof of the stunningly simple answer for the ase of odd nwould still be interesting.As pointed out by Rihard Stanley [8℄, there is an alternative way to obtain theresult of Theorem 4 without using Theorem 3, but that proof in turn uses symmetrifuntions and related mahinery. It is shown in Exerises 69(a) and 69() of [9℄ that(1) Pn(q) =Xw q(�(w(12���n)) = 1�n+12 � b(n�1)=2Xi=0 (n+ 1; n� 2i)qn�2i;where, as usual, (n; k) is a signless Stirling number of the �rst kind, that is, thenumber of permutations of length n with k yles, w ranges over all (n�1))! ylesof length n in the symmetri group of degree n, and w(12 � � �n) denotes the produtof w and (12 � � �n).Now an an be omputed by onsidering P 0n(1), whih in turn an be omputedby onsidering the well-known identityFn+1(x) = n+1Xk=1 (n+ 1; k)xk = x(x + 1) � � � (x+ n);and then evaluating F 0n+1(1) + F 0n+1(�1).The present paper provides further evidene that the yles of the graph G(p)have various enumerative properties that are similar to the enumerative propertiesof the graph �(p), that is, the yles of the permutation p. This raises the questionas to whih well-known properties of the Stirling numbers, suh as unimodality,log-onavity, real zeros property, hold for the Hultman numbers as well. (See forinstane Chapter 8 of [2℄ for de�nitions and basi information on these properties.)A simple modi�ation is neessary sine SH(n; k) = 0 if n and k are of the sameparity. So let Qn(q) = ( P(x;y)2TCn q(�(xy))=2 if n is evenP(x;y)2TCn q((�(xy))+1)=2 if n is odd.While the oeÆients of Pn(q) are all the Hultman numbers SH(n � 1; 1),SH(n�1; 2); � � � ;SH(n�1; n�1), the oeÆients of Qn(q) are the nonzero Hultmannumbers SH(n� 1; k).Clearly, Qn(q) = Pn(q2) if n is even, and Qn(q) = qPn(q2) if n is odd. However,Exerise 69(b) of [9℄ shows that all roots of Pn(q) have real part 0. Hene the rootsofQn(q) are all real and non-positive, from whih the log-onavity and unimodalityof the oeÆients of Qn(q) follows. This raises the question of whether there is aombinatorial proof for the latter properties, possibly along the lines of the workof Brue Sagan [6℄ for the Stirling numbers of both kinds. Perhaps it is useful tonote that (1) and Theorem 2 imply thatSH(n; k) = � (n+ 2; k)=�n+22 � if n� k is odd,0 if n� k is even.Finally, to generalize in another diretion, we point out that it is very well-known (see, for example, Chapter 4 of [2℄), that if we selet a n-permutation p at



THE AVERAGE NUMBER OF BLOCK INTERCHANGES NEEDED TO SORT A PERMUTATION AND A RECENT RESULT OF STANLEY9random, and i and j are two �xed, distint positive integers at most as large as n,then the probability that p ontains i and j in the same yle is 1=2. Theorem 3shows that if n is odd, then the multiset fxyj(x; y) 2 TCng behaves just like theset Sn of all permutations in this aspet. This raises the question whether thereare other naturally de�ned subsets (or multisets) of n-permutations in whih thisphenomenon ours.
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