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Abstract

We prove that the generating polynomials of partitions of an n-
element set into non-singleton blocks, counted by the number of blocks,
have real roots only and we study the asymptotic behavior of the left-
most roots. We apply this information to find the most likely number
of blocks. Also, we present a quick way to prove the corresponding
statement for cycles of permutations in which each cycle is longer than
a given integer r.

1 Introduction

A partition of the set [n] = {1, 2, · · · , n} is a set of blocks disjoint blocks
B1, B2, · · · , Bk so that ∪ki=1Bi = [n]. The number of partitions of [n] into
k blocks is denoted by S(n, k) and is called a Stirling number of the second
kind.

Similarly, the number of permutations of length n with exactly k cycles
is denoted by c(n, k), and is called a signless Stirling number of the first
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kind. See any textbook on Introductory Combinatorics, such as [2] or [3] for
the relevant definitions, or basic facts, on Stirling numbers.

The “horizontal” generating functions, or generating polynomials, of
Stirling numbers have many interesting properties. Let n be a fixed pos-
itive integer. Then it is well-known (see [2] or [3] for instance) that

Cn(x) =

n∑
k=1

c(n, k)xk = x(x+ 1) · · · (x+ n− 1). (1)

In particular, the roots of the generating polynomial Cn(x) are all real (in-
deed, they are the integers 0,−1,−2, · · · ,−(n− 1)).

Similarly, it is known (see [23], page 20, for instance) that for any fixed
positive integer n, the roots of the generating polynomial

Sn(x) =
n∑

k=1

S(n, k)xk

are all real, though they are not nearly as easy to describe as those of Cn(x).
Rodney Canfield [8] (in the case of r = 1) and Francesco Brenti [5] (in

the general case) have generalized (1) as follows. Let dr(n, k) be the number
of permutations of length n that have k cycles, each longer than r. Such
permutations are sometimes called r-derangements. Then the generating
polynomial

dn,r(x) =
∑
k≥1

dr(n, k)xk (2)

has real roots only. Present author [4] proved that for any given positive
integer constant m, there exists a positive number N so that if n > N , then
one of these roots will be very close to −1, one will be very close to −2, and
so on, with one being very close to −m, to close the sequence of m roots
being very close to consecutive negative integers.

In this paper, we consider the analogue problem for set partitions. Let
D(n, k) be the number of partitions of [n] into k blocks, each consisting of
more than one element. We are going to prove that the generating polyno-
mial

Dn(x) =
∑
k≥1

D(n, k)xk (3)

has real roots only. We will then use this information to determine the
location of the largest coefficient(s) of Dn(x). We also prove that the num-
ber of blocks is normally distributed. Finally, we use our methods on r-
derangements, and prove the more general result that for any fixed r, the
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distribution of the number of cycles of r-derangements of length n converges
to a normal distribution.

Note that the fact that the two kinds of Stirling numbers behave in
the same way under this generalization is not completely expected. Indeed,
while 1/e of all permutations of length n have no cycles of length 1, and
in general, a constant factor of permutations of length n have no cycles of
length r or less, the corresponding statement is not true for set partitions.
Indeed, almost all partitions of [n] contain a singleton block as we show in
Section 3.1. However, as this paper proves, the real zeros property survives.

Finally, we mention that the vertical generating functions (minimal block
or cycle size is fixed, n varies) of permutations and set partitions have been
studied in [8].

2 The Proof of The Real Zeros Property

We start by a recurrence relation satisfied by the numbers D(n, k) of parti-
tions of [n] into k blocks, each block consisting of more than one element.
It is straightforward to see that

D(n, k) = kD(n− 1, k) + (n− 1)D(n− 2, k − 1). (4)

Indeed, the first term of the right-hand side counts partitions of [n] into
blocks larger than one in which the element n is in a block larger than two,
and the second term of the right-hand side counts those in which n is in a
block of size exactly two.

Let Dn(x) =
∑

k≥1D(n, k)xk. Then (4) yields

Dn(x) = x
(
D′n−1(x) + (n− 1)Dn−2(x)

)
. (5)

Note that D1(x) = 0, and Dn(x) = x if 2 ≤ n < 4. So the first non-
trivial polynomial Dn(x) occurs when n = 4, and then D4(x) = 3x2 + x. In
the next non-trivial case of n = 5, we get D5 = 10x2 + x.

Theorem 1 Let n ≥ 2. Then the polynomial Dn(x) has real roots only. All
these roots are simple and non-positive. Furthermore, the roots of Dn(x) and
Dn−1(x) are interlacing in the following sense. If Dn(x) and Dn−1(x) are
both of degree d, and their roots are, respectively, 0 = x0 > x1 > · · · > xd−1,
and 0 = y0 > y1 > · · · > yd−1, then

0 > x1 > y1 > x2 > y2 > · · · > xd−1 > yd−1, (6)
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while if Dn(x) is of degree d+ 1 and Dn−1(x) is of degree d, and their roots
are, respectively, 0 = x0 > x1 > · · · > xd, and 0 = y0 > y1 > · · · > yd−1,
then

0 > x1 > y1 > x2 > y2 > · · · > xd−1 > yd−1 > xd. (7)

Proof: We prove our statements by induction on n. For n ≤ 4, the state-
ments are true. Now assume that the statement is true for n− 1, and let us
prove it for n. Let 0 = y0 > y1 > · · · > yd−1 be the roots of Dn−1(x).

First we claim that if 0 > x > y1, then Dn−1(x) < 0, that is, the poly-
nomial Dn−1 is negative between its two largest roots. Indeed, D′n−1(0) =
D(n− 1, 1) = 1, so Dn−1(x)′ > 0 in a neighborhood of 0. This implies that
in that neighborhood, Dn−1(x) is monotone increasing. As Dn−1(0) = 0,
this implies our claim.

Now consider (5) at x = y1. We claim that at that root, we have both
D′n−1(y1) < 0 and Dn−2(y1) < 0. The latter is a direct consequence of
the previous paragraph and the induction hypothesis. Indeed, the induction
hypothesis shows that if z1 is the largest negative root of Dn−2, then z1 <
y1 < 0, and the previous paragraph, applied to Dn−2 instead of Dn−1 shows
that Dn−2(x) < 0 if x ∈ (z1, 0). So in particular Dn−2(y1) < 0. The
former follows from Rolle’s theorem. Indeed, by Rolle’s theorem, between
two consecutive roots of Dn−1, there has to be a root of D′n−1. As Dn−1 has
simple roots only, say d of them, D′n−1 must have d − 1 simple roots, and
therefore, by the pigeon-hole principle, there must be exactly one of them
between any two consecutive roots of Dn−1. In particular, there is exactly
one root of D′n−1 between 0 and y1, so the sign of D′n−1(y1) is the opposite
of the sign of D′n−1(0) = 1, that is, it is negative.

So when x = y1, the argument of the previous paragraph shows that the
right-hand side of (5) is the product of the negative real number y1, and the
negative real number D′n−1(y1) + (n− 1)Dn−2(y1). Therefore, the left-hand
side must be positive, that is, Dn(y1) > 0. As Dn(x) < 0 in a neighborhood
of 0, this shows that Dn has a root in the interval (y1, 0).

More generally, we claim that Dn(x) has a root in the interval (yi+1, yi).
For this, it suffices to show that Dn(yi) and Dn(yi+1) have opposite signs.
This will follow by (5) if we can show all of the following.

(i) D′n−1(yi) and D′n−1(yi+1) have opposite signs,

(ii) Dn−2(yi) and Dn−2(yi+1) have opposite signs, and

(iii) D′n−1(yi) and Dn−2(yi) have equal signs.
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Just as before, (i) follows from Rolle’s theorem, and (ii) follows from the in-
duction hypothesis. In order to see (iii), note that by Rolle’s theorem, D′n−1
changes signs exactly i times in (yi, 0), while by the induction hypothesis,
Dn−2 changes signs i− 1 times in (yi, 0). We have seen at the beginning of
this proof that in a small neighborhood of 0, D′n−1 is positive, while Dn−2
is negative, so (iii) follows. Therefore, by (5), Dn(yi) and Dn(yi+1) have
opposite signs, and so Dn(x) has a root in (yi+1, yi).

Note that this argument does not directly prove that Dn has exactly one
root in (yi+1, yi), but it does prove that it has an odd number of roots in each
such interval. Indeed, Dn has opposite signs at the endpoints of (yi+1, yi),
it has an odd number of sign changes, and so, an odd number of roots on
that interval. As the total number of roots of Dn is at most one larger than
that of Dn−1, it follows that Dn has indeed exactly one root in each interval
(yi+1, yi).

The above argument completes the proof of the theorem for odd n. When
n is even, then Dn is of degree d + 1, while Dn−1 is of degree d. In that
case, we still have to show that Dn has a root in the interval (−∞, yd−1).
However, this follows from the previous paragraph since the last root xd of
Dn must be negative, and cannot be in any of the intervals (yi+1, yi). 3

It follows from Theorem 1 that both the sequence D4, D6, D8, · · · , and
the sequence D5, D7, D9, · · · are Sturm sequences. The interested reader
should consult [22] for the definition and properties of Sturm sequences.

3 Applications of The Real Zeros Property

In this Section, we consider two applications of the real zeros property. Both
are combinatorial with a probabilistic flavor.

3.1 Locating peaks

If a polynomial
∑n

k=1 bkx
k with positive coefficients has real roots only, then

it is known [3] that the sequence b1, b2, · · · bn of its coefficients is strongly log-
concave. That is, for all indices 2 ≤ j ≤ n− 1, the inequality

b2j ≥ bj−1bj+1
j + 1

j
· n− j + 1

n− j

holds. In other words, the ratio bj+1/bj is strictly decreasing with j, and
therefore there is at most one index j so that bj+1/bj = 1. Thus the sequence
b1, b2, · · · bn has either one peak, or two consecutive peaks.
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A useful tool in finding the location of this peak is the following theorem
of Darroch.

Theorem 2 [11] Let A(x) =
∑n

k=1 akx
k be a polynomial that has real roots

only that satisfies A(1) > 0. Let m be a peak for the sequence of the coeffi-

cients of A(x). Let µ = A′(1)/A(1) =
∑n

k=1 kak∑n
k=1 ak

. Then we have

|µ−m| < 1.

Note that in a combinatorial setup, µ is the average value of the statistic
counted by the generating polynomial A(x). For instance, if A(x) = Sn(x),
then µ is the average number of blocks in a randomly selected partition of
[n].

There is a very extensive list of results on the peak (or two peaks) of
the sequence S(n, 1), S(n, 2), · · · , S(n, n) of Stirling numbers of the second
kind. See [9] for a brief history of this topic and the relevant references. In
particular, if K(n) denotes the index of this peak (or the one that comes
first, if there are two of them), then K(n) ∼ n/ log n . More precisely, let r
be the unique positive root of the equation

rer = n. (8)

Then, for n sufficiently large, K(n) is one of the two integers that are closest
to er − 1. In view of Theorem 2, one way to approach this problem is by
computing the average number of blocks in a randomly selected partition of
[n].

Now that we have proved that the generating polynomial Dn(x) =∑
k≥1D(n, k)xk has real roots only, it is natural to ask how much of the

long list of results on Stirling numbers can be generalized to the num-
bers D(n, k). In this paper, we will show a quick way of estimating the
average number of blocks in a partition of [n] with no singleton blocks,
and so, by Darroch’s theorem, the location of the peak(s) in the sequence
D(n, 1), D(n, 2), · · · , D(n, bn/2c). For shortness, let us introduce the nota-
tion D(n) =

∑
kD(n, k).

Proposition 1 Let Xn be the random variable counting blocks of partitions
of [n] that have no singleton blocks. Then for all positive integers n ≥ 2, the
equality

E(Xn) =
D(n+ 1)

D(n)
− n(D(n− 1))

D(n)
(9)

holds, where E(Xn) denotes the expectation of Xn.
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Proof: The total number of blocks in all partitions counted by D(n) is
clearly

∑
k≥1 kD(n, k). On the other hand,

D(n+ 1) =
∑
k≥1

kD(n, k) + nD(n− 1),

since the first term of the right-hand side counts partitions in which the
element n + 1 is in a block of size three or more, and the second term
counts partitions in which the element n + 1 is in a block of size two. So∑

k≥1 kD(n, k) = D(n+ 1)− nD(n− 1), and the statement follows. 3

So the peak of the sequence D(n, 1), D(n, 2), · · · is one of the two integers
bracketing

D(n+ 1)

D(n)
− n(D(n− 1))

D(n)
. (10)

We can compare this number with the location K(n) of the peak of the
sequence S(n, 1), S(n, 2), · · · , S(n, n) as follows.

Let B(n) denote the number of all partitions of [n]. This number is often
called a Bell number. There are numerous precise results on the asymptotics
of the Bell numbers. We will only need the following fact [12].

logB(n) = n (log n− log logn+O(1)) , (11)

and its consequence that

B(n)

B(n− 1)
∼ n

e log n
. (12)

Let Yn be the random variable that counts blocks of unrestricted parti-
tions of [n], and let Sn be the variable that counts singleton blocks of unre-
stricted partitions of [n]. As the average number of blocks in unrestricted

partitions of [n] is 1
Bn

∑n
k=1 kS(n, k) = B(n+1)−B(n)

Bn
, we have

E(Yn) =
B(n+ 1)

B(n)
− 1 ∼ n

e log n
. (13)

Before comparing formulae (9) and (13), we mentioned some simple facts.
For any given element i ∈ [n], the probability that in a randomly selected

unrestricted partition of [n], the element i forms a singleton block is B(n−1)
B(n) .

Therefore, by linearity of expectation, we have

E(Sn) = n
B(n− 1)

B(n)
∼ e log n. (14)
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The following simple and well-known result will be very useful for us,
and therefore, we state it as a proposition.

Proposition 2 For all positive integers n, the equality

B(n) = D(n) +D(n+ 1)

holds.

Proof: We define a simple bijection f from the set of partitions of [n] and
[n+1] with no singleton blocks into the set of partitions of [n]. On partitions
counted by D(n), let f act as the identity map. On partitions counted by
D(n+ 1), let f act by removing the element n+ 1 and turning each element
that shared a block with n+ 1 into a singleton block. 3

This simple fact has two important corollaries that we will use.

Corollary 1 We have D(n+ 1) ∼ B(n).

Proof: Note that B(n)
D(n) → ∞ since D(n+ 1) < B(n) and D(n+1)

D(n) → ∞. To
see the latter, note that for any h, there exists an N so that if n > N , then
almost all partitions counted by D(n) have more than h blocks. 3

Now we can easily see that the locations of the peaks of the sequences
D(n+1, 1), D(n+1, 2), · · · , and B(n, 1), B(n, 2), · · · , as well as the averages
E(Xn+1) and E(Yn) as given in formulae (9) and (13) are indeed very close
to each other. In fact, E(Xn+1) ∼ E(Yn) as can be seen by comparing (9)
and (13). We will not attempt a more precise comparison here. However,

we would like to point out that the − (n+1)(D(n)
D(n+1) summand in (9), when n is

replaced by n + 1, asymptotically agrees with E(Sn) as computed in (14).
This is in line with what one would intuitively expect, since the difference
between partitions on which Xn+1 is defined and partitions on which Yn is
defined is that in the former, singleton blocks are not allowed.

Corollary 2 Let Nn be the variable counting the non-singleton blocks of a
randomly selected unrestricted partition of [n]. Let Xn denote the number
of blocks of a randomly selected partition of [n] with no singleton blocks.

Then we have

E(Xn+1 − 1)
D(n+ 1)

B(n)
+ E(Xn)

D(n)

B(n)
= E(Nn), (15)
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and also,

E((Xn+1 − 1)2)
D(n+ 1)

B(n)
+ E(X2

n)
D(n)

B(n)
= E(N2

n). (16)

Proof: Direct consequence of the bijection f defined in the proof of Propo-
sition 2. 3

3.2 Another way to locate the peaks

From the results of the previous section – see (10), (11), (12) and Corollary
1 – it follows that the asymptotic location of the K∗n peak of the sequence
D(n, 1), D(n, 2), . . . , D(n, n) is

K∗n ∼
n

log(n)
, (17)

which is the same as for the classical Stirling numbers [13, 15, 17].
Analyzing the ordinary generating function of D(n, k) with the saddle

point method we are going to show that as n goes to infinity,

D(n, k) ∼ S(n, k) ∼ kn

k!
(18)

for any fixed k. From this it will follow at once that the asymptotics (17)
holds. What is more, relying on (18) and following the proof presented in
[16] and in its references one can prove that the maximizing index is close
to

n− 1
2

W
(
n− 1

2

) ,
where W (n) is the Lambert function and it is the unique solution of the
equation W (n)eW (n) = n.

To prove (18) we need the following proposition.

Proposition 3 For any fixed integers k, let

fk(x) =
∞∑
n=0

D(n, k)xn

be the ordinary generating function of the sequence (D(n, k)). The following
recursion holds true:

fk(x) =
x2

1− kx
(xfk−1(x))′ , (k ≥ 2)
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with

f1(x) =
x2

1− x
.

Proof: From (4) it follows that

fk(x) =
∞∑
n=0

D(n, k)xn =

kx
∞∑
n=1

D(n− 1, k)xn−1 + x2
∞∑
n=2

(n− 1)D(n− 2, k − 1)xn−2 =

kx
∞∑
n=0

D(n, k)xn + x2
∞∑
n=2

(n+ 1)D(n, k − 1)xn =

kxfk(x) + x2
(
xf ′k−1(x) + fk−1(x)

)
which is equivalent to our recursion. The form of f1(x) is obvious, since
D(n, k) = 1 if n ≥ 2. 3

This simple observation with induction shows that, in general, the fk(x)
functions are rational functions of the form

fk(x) = x2k
pk(x)

(kx− 1)((k − 1)x− 1)2((k − 2)x− 1)3 · · · (x− 1)k
(k ≥ 1),

(19)

where pk(x) is a polynomial of degree k(k−1)
2 . These polynomials firstly

appeared in a 1934 paper of Ward [21] who studied the representations of
the classical Stirling numbers as sums of factorials (see [10] for more details
and other citations). The first fk(x) functions are as follows:

f1(x) = x2
−1

x− 1

f2(x) = x4
2x− 3

(x− 1)2(2x− 1)

f3(x) = x6
−12x3 + 40x2 − 45x+ 15

(x− 1)3(2x− 1)2(3x− 1)

f4(x) = x8
288x6 − 1560x5 + 3500x4 − 4130x3 + 2625x2 − 840x+ 105

(x− 1)4(2x− 1)3(3x− 1)2(4x− 1)
.

Going back to our original goal, formula (19) enables us to prove the
following.
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Proposition 4 For any fixed positive integer k and large n we have that

D(n, k) =
kn

k!
+O(k − 1 + ε)n

holds for arbitrary ε > 0.

Proof: The asymptotics of D(n, k) can be determined by analyzing the
singularities of its generating function. This is the well known saddle point
method described in details by Wilf in [23].

The function fk(x) has k singular points on the real line and the smallest
one is at x0 = 1

k . This pole is of order one. The principal part of fk(x)
around this point is

PP

(
fk,

1

k

)
= − 1

k · k!
(
x− 1

k

) .
Since x0 is a first order pole and there are no more poles with the same
absolute value, the saddle point method [23, Theorem 5.2.1] in this particular
case says that

D(n, k) = [xn]PP

(
fk,

1

k

)
+O

(
1

R′
+ ε

)n

,

where R′ is the modulus of the second smallest singular point. In this case
this point is x1 = 1

k−1 . Expanding the PP
(
fk,

1
k

)
principal part with respect

to x we get the statement. 3

3.3 The asymptotics of the zeros of Dn(x)

Having proven that the zeros of the Dn(x) polynomials are all real (and
negative), it can be asked that how large is the leftmost zero of Dn(x)? Let
z∗n denote this leftmost zero. We point out that an easily calculable upper
bound can be given, and this upper bound approximates z∗n surprisingly
well. This approximation is based on a theorem of Laguerre and Samuelson.

Let
p(x) = xn + a1x

n−1 + · · ·+ an−1x+ an (20)

be an arbitrary polynomial such that an 6= 0. Samuelson [20] – rediscovering
the results of Laguerre [14] – gave bounds for the interval which contains all
the zeros of a polynomial (20) whose zeros are all real. Samuelson’s result
states that all these zeros are contained in the interval [x−, x+], where

x± = −a1
n
± n− 1

n

√
a21 −

2n

n− 1
a2 (21)
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for (20).
We want to determine x− when p(x) = Dn(x) (obviously, x+ = 0). It

can easily be seen that

a1 =
D
(
n, bn2 c − 1

)
D
(
n, bn2 c

) , and a2 =
D
(
n, bn2 c − 2

)
D
(
n, bn2 c

) .

Hence

|z∗n| ≤ −
D
(
n, bn2 c − 1

)
nD

(
n, bn2 c

) −n− 1

n

√√√√(D (n, bn2 c − 1
)

D
(
n, bn2 c

) )2

− 2n

n− 1

D
(
n, bn2 c − 2

)
D
(
n, bn2 c

) .

In the particular case of the Dn(x) polynomials the Samuelson estimation
works very well. The following table shows compares the actual values of
|z∗n| with the estimates obtained by the Laguerre-Samuelson theorem for
some even numbers n.

n 10 100 200
Numerical value of |z∗n| 9.22 11 085.5 89 360.6
Estimate of Samuelson 9.24 11 163.3 90 022.0

The following table contains the analogous information for odd numbers n.

n 11 101 201
Numerical value of |z∗n| 2.828 2 852.96 22 677.2
Estimate of Samuelson 2.855 2 962.21 23 570.6

By simple combinatorial arguments one can find the special values of
D
(
n, bn2 c

)
, D

(
n, bn2 c − 1

)
, and D

(
n, bn2 c − 2

)
easily. For example,

D
(
n,
⌊n

2

⌋)
=


n!

2n/2(n
2 )!
, if n is even;(

n
3

) (n−3)!
2(n−3)/2(n−3

2 )!
, if n ≥ 3 is odd.

With these special values one can find that for the Samuelson estimate

x− ∼ −
1

36
√

6
n3 (n→∞ is even),

x− ∼ −
1

108
√

10
n3 (n→∞ is odd).

These asymptotics and the numerical calculations suggest the following con-
jecture about the asymptotic behavior of the leftmost zeros of Dn(x):

z∗n ∼ −cevenn3 (n→∞ is even),

z∗n ∼ −coddn3 (n→∞ is odd).
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4 Basic modularity properties of D(n, k) and Dn(1)

A simple application of the binomial theorem (see (24) below) reveals that
the well known modularity property

S(p, k) ≡ 0 (mod p) (1 < k < n) (22)

of the Stirling numbers can be transferred to the D(n, k) numbers:

D(p, k) ≡ 0 (mod p) (1 < k < n). (23)

Here p is an arbitrary prime. The most basic Bell number divisibility follows
directly from (22):

Bp ≡ 2 (mod p)

for odd primes p. The corresponding divisibility for Dn = Dn(1) is the
consequence of (23) and of (3):

Dp ≡ 1 (mod p)

for any prime p including p = 2.
The identity in question reads as

D(n, k) =

n∑
s=n−k

(
n

s

)
(−1)n−sS(s, s+ k − n). (24)

From this and from the fact that p
∣∣(p

k

)
(1 ≤ k < p) (23) follows, indeed.

Formula (24) can be proven easily considering the exponential generating
function

∞∑
n=0

D(n, k)
xn

n!
=

1

k!
(ex − 1− x)k .

Expanding ((ex − 1)− x)k with the binomial theorem and using the fact that
1
k!(e

x − 1)k is the exponential generating function of the Stirling numbers,
we are done.

We remark that (24) can be generalized to

Dm(n, k) =
n∑

s=0

(
n

s

) k∑
i=0

(−1)k−iS(s, i)Dm−1(n− s, k − i),

where Dm(n, k) counts the partitions of [n] into k blocks such that all of the
blocks contain at least m elements (so D(n, k) = D2(n, k)).
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5 Further Directions

It is natural to ask whether Theorem 1 can be generalized to partitions with
all blocks larger than r, where r is a given positive integer. That would
parallel the result (2) of Brenti [5] on permutations.

A consequence of the fact that the polynomials Dn(x) have real zeros is
that for any fixed n, the sequence D(n, 1), D(n, 2), · · · , D(n, bn/rc) is log-
concave. In [19], Bruce Sagan provides a proof for the special case of r = 0,
that is, that of the classic Stirling numbers of the second kind. However,
his injection proving that result does not preserve the no-singleton-block
property. Now that we know that the statement is true, it is natural to ask
for an injective proof. Similarly, as we know that dn,r(x) has real roots only
(see (1)), we can ask for a combinatorial proof for the fact that the sequence
dr(n, 1), dr(n, 2), · · · , dr(n, bn/rc) is log-concave.
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