
On The Probability that Certain CompositionsHave The Same Number Of PartsMikl�os B�onaDepartment of MathematisUniversity of FloridaGainesville FL 32611-8105USA Arnold KnopfmaherShool of MathematisUniversity of the WitwatersrandJohannesburgSouth AfriaNovember 6, 2008AbstratWe ompute the asymptoti probability that two randomly seletedompositions of n into parts equal to a or b have the same number ofparts. In addition we provide bijetions in the ase of parts of sizes1 and 2 with weighted lattie paths and entral Whitney numbers offene posets. Expliit algebrai generating funtions and asymptotiprobabilities are also omputed in the ase of pairs of ompositions ofn into parts at least d, for any �xed natural number d.1 IntrodutionA omposition of the positive integer n is a sequene (a1; a2; � � � ; ak) of pos-itive integers so thatPki=1 ai = n. The ai are alled the parts of the ompo-sition. It is well-known [1℄ that the number of ompositions of n into k partsis �n�1k�1�. If we hoose an ordered pair (X;Y ) of ompositions of the integern at random, the probability that X and Y both have k parts is (n�1k�1)24n�1 . Ifwe express this probability pn in terms of asymptotis as n ! 1 , we getthat pn = nXk=0 �n�1k�1�24n�1 = �2n�2n�1 �4n�1 � 1pn� : (1)In this paper, we will �rst study the probability pa;b(n) that two ompo-sitions of n that only have part sizes a and b have the same number of parts.We begin by studying the speial ase of a = 1 and b = 2. We will obtain1



the generating funtion for the number of suh pairs of ompositions withthe same number of parts and we point out onnetions with another lassof restrited ompositions, and, surprisingly, entral Whitney numbers ofthe fene poset. Then we obtain a preise asymptoti expression for p1;2(n).We then turn to the general ase, and �nd the generating funtion forthe number of pairs of ompositions of n into parts equal to a or b that havethe same number of parts. Again we obtain a preise asymptoti expressionfor this probability.Thereafter we use the tehnique of diagonalisation of bivariate powerseries to obtain expliit generating funtions and asymptoti estimates forthe number of pairs of ompositions with the same of parts, where all partsare at least d, for any �xed natural number d.In all ases we �nd that the probability is asymptoti to C=pn for someonstant C whih depends on the sizes of the permitted parts. We pointout that this probability is signi�antly higher than what straightforwardestimates would suggest. Indeed, if qi is the probability that a randomlyseleted omposition of n (with a �xed set of allowed parts) has exatly iparts, then Pni=1 qi = 1, while the probability that two randomly seletedsuh ompositions have the same number of parts is p =Pni=1 q2i . Applyingthe Cauhy-Shwarz inequality, we only get thatp = nXi=1 q2i � 1n  nXi=1 qi!2 = 1n;whih is signi�antly less than the C=pn asymptoti value that we are goingto prove.2 Compositions with parts equal to 1 or 22.1 At most two or at least two?It is well-known [1℄ that the number of ompositions of n into parts equalto 1 or 2 is the Fibonai number Fn+1, with F0 = 0, F1 = 1, and Fn =Fn�1 + Fn�2 for n � 2. Indeed, using indution, suh a omposition eitherhas 1 for its �rst part, and then an be ontinued in Fn�1 ways, or has 2 forits �rst part, and then an be ontinued in Fn�2 ways. It is worth pointingout that the number of these ompositions also equals Pdn=2ek=0 �n�kk �, sineif suh a omposition has k parts equal to 2, then it has n� 2k parts equalto 1. When arranging these n � k parts in a line, there are �n�kk � ways tohoose the positions of the parts equal to 2.2



Interestingly, the number of ompositions of n into parts that are at leasttwo is also a Fibonai number, namely Fn�1. Indeed, for n = 1, there areno suh ompositions, and for n = 2, there is one suh omposition. Forlarger values of n, we an use indution again. Suh a omposition eitherhas a 2 for its �rst part, and then it an be ontinued in Fn�3 ways, or hasa �rst part larger than 2, in whih ase subtrating 1 of that �rst part, weget one of Fn�2 ompositions of n into parts at least two.Even more interestingly, there is a one-to-one orrespondene betweenthese lasses of ompositions even if we speify the number of parts. Indeed,the number of ompositions of n into n�k parts that are at most 2 is �n�kk �sine suh ompositions must onsist of k parts equal to 2 and n� 2k partsequal to 1. The number of ompositions of n+ 2 into k + 1 parts that areat least two is also �n+2�(k+1)�1k � = �n�kk � sine these ompositions are inbijetion with the ompositions of n� k + 1 into k + 1 parts (just add 1 toeah part). Therefore, if we an ompute the probability that two randomlyseleted ompositions have the same number of parts for one of these twolasses of ompositions, the result will also apply for the other lass.We note that this line of researh �ts into an inipient interest in similarquestions [2℄, [7℄.2.2 A bijetion with lattie pathsLet Cn be the set of ordered pairs (X;Y ) of ompositions of n into partsequal to 1 or 2 so that X and Y have the same number of parts. Then itfollows from what we said in the �rst paragraph of the previous subsetionthat jCnj = Pdn=2ek=0 �n�kk �2. It is always interesting to see a set ountingpairs (like Cn) being equinumerous to a set ounting single objets that areseemingly unrelated. In this subsetion, we will provide suh an example.A weighted lattie path is a lattie path whose edges are assoiated aweight. The weight of a lattie path is the sum of the weights of its edges.Let Ln be the set of lattie paths of weight n that start in (0; 0) and endon the horizontal axis whose steps are of the following four kinds.� An (1; 0)-step (horizontal step) with weight 1.� An (1; 0)-step (horizontal step) with weight 2.� A (1; 1)-step (\up step") with weight 2.� A (1;�1)-step (\down step ") with weight 1.Proposition 1 There is a natural bijetion f : Cn ! Ln.3



Proof: Let (X;Y ) 2 Cn, and let X = (x1; x2; � � � ; xk), and let Y =(y1; y2; � � � ; yk). Then f(X;Y ) will have k steps. For eah i, ompare xiand yi, and de�ne the ith step si of f(X;Y ) as follows.� If xi = yi = 1, then let si be a horizontal step of weight 1.� If xi = yi = 2, then let si be a horizontal step of weight 2.� If xi = 2 and yi = 1, then let si be an \up" step, neessarily withweight 2.� If xi = 1 and yi = 2, then let si be a \down" step, neessarily withweight 1.Note that for eah i, the weight of si is equal to xi, so the total weight off(X;Y ) is indeedPki=1 xi = n. Furthermore, f(X;Y ) ends on the horizontalaxis, sine the fat that X and Y have the same number of parts impliesthat they have the same number of parts equal to 1, and the same numberof parts equal to 2. Therefore, f maps into Ln.In order to show that f is a bijetion, it suÆes to show that it hasan inverse. Let L 2 Ln, and let s1; s2; � � � ; sk be the steps of L. Then,using the four rules above, we an rereate the unique pair (X;Y ) for whihf(X;Y ) = L ould hold. What is left to see is that this (X;Y ) is indeed inCn. Clearly, X and Y have both k parts sine they were reovered from L.On the other hand, the sum of the parts of X is n, sine this sum is equalto the weight of L. Finally, the sum of the parts of Y is also n. Indeed, Lends on the horizontal axis, so it has as many up steps as down steps, sothe sum of the parts of Y is equal to the sum of the parts of X. 3See Figure 1 for an illustration of this bijetion.
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2Figure 1: The path f(X;Y ) for X = (2; 1; 1; 1; 2; 2) and Y = (1; 1; 2; 2; 1; 2).2.3 Generating funtionsIn what follows, we will enumerate the elements of Ln instead of Cn. Let dndenote the number of elements of Ln, set d0 = 1, and let D(x) =Pn�0 dnxn.4



Furthermore, let bn be the number of lattie paths in Ln onsisting of at leasttwo steps whih do not touh the horizontal axis, exept for their startingand ending point. Note that b0 = b1 = b2 = 0. Also note that paths ountedby bn an be above or below the axis, so b3 = 2. Figure 2 shows the fourpaths of L5 that are enumerated by b5.
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11Figure 2: The four paths enumerated by b5.Set B(x) = Pn�0 bnxn. The relation between the sequenes bn and dnis given in the following lemma.Lemma 1 Set dn = 0 if n < 0. Then for all positive integers n, the equalitydn = dn�1 + dn�2 + nXi=0 bidn�i (2)holds.Proof: There are three possibilities for the way a path belonging to Ln anstart. It an start with a horizontal step of weight 1, and then �nish in oneof dn�1 ways; it an start with a horizontal step of weight 2, and then �nishin one of dn�2 ways; or it an start with a non-horizontal step, touh thehorizontal axis �rst at the end of a subpath of weight i (this is possible inbi ways), and then �nish in one of dn�i ways. 3Corollary 1 The generating funtions B(x) and D(x) are onneted by theequation D(x) = 11� x� x2 �B(x) : (3)Proof: Multiply both sides of (2) by xn and sum over all n � 1 to getD(x)� 1 = xD(x) + x2D(x) +B(x)D(x):5



Expressing D(x) from this equation proves our laim. 3So one we �nd an expliit formula for B(x), we will have an expliitformula for D(x). In order to �nd an expliit formula for B(x), note thathalf of the paths enumerated by bn are over the horizontal axis, and theother half are below that axis. Let us ount those that are above the axis.These paths start with an up step and end with a down step. In between,they onsist of a subpath of weight n � 3 that never goes below the y = 1line. Therefore, if n denotes the number of paths of weight n that start andend on the horizontal axis and never go below that axis, then bn = 2n�3for all n. (Here we set n = 0 if n < 0, and 0 = 1. ) If C(x) =Pn�0 nxn,then this leads to the equalityB(x) = 2x3C(x): (4)However, there is another relation between B(x) and C(x). Note that apath ounted by n an either start with a horizontal step of weight 1, andthen �nish in one of n�1 ways, or start with a horizontal step of weight2, and then �nish in one of n�2 ways, or start with an up step, touh thehorizontal axis �rst at the end of a subpath of weight i, whih an happen inbi=2 ways, and then �nish in one of n�i ways. This leads to the reurrenerelation n = n�1 + n�2 + 12 nXi=0 bin�i:Or, in terms of generating funtions,C(x)� 1 = xC(x) + x2C(x) + 12B(x)C(x): (5)Comparing this with (4) and rearranging yieldsx3C2(x)� (1� x� x2)C(x) + 1 = 0; (6)whih is a quadrati equation for C(x). Solving this equation, one sees easilyby verifying the value of the obtained power series at x = 0 that the negativesquare root provides the orret solution, that is,C(x) = 1� x� x2 �p1� 2x� x2 � 2x3 + x42x3 :Therefore, by (4),B(x) = 2x3C(x) = 1� x� x2 �p1� 2x� x2 � 2x3 + x4:6



Finally, by (3),D(x) = 1p1� 2x� x2 � 2x3 + x4 = 1p(1� 3x+ x2)(1 + x+ x2) : (7)2.4 AsymptotisWe are going to evaluate the probability p1;2(n) that two randomly seletedompositions of n with parts equal to one or two have the same number ofparts. Reall from the Introdution that the number of suh ompositionsis the Fibonai number Fn+1. Therefore, p1;2(n) = dnF 2n+1 . It is well-known[1℄ that the Fibonai numbers are given by the expliit formulaFn = 1p5 (�n � �n) ;where � = (p5 + 1)=2 and � = (p5� 1)=2. Therefore, the number of pairsof ompositions of n with parts of size 1 or 2 isF 2n+1 = 15 ��2n+2 � �2n+2 � 2� � (3 +p5)n+15 � 2n+1 : (8)Now we need to determine the asymptotis of dn. We are going to use thesingularity analysis method of Flajolet and Odlyzko to �nd these asymp-totis. This relevant theorem an be found in many soures on analytiombinatoris, suh as [3℄ or [5℄. (Equivalently one ould use Darboux'stheorem, as found for example in [8℄.)Essentially the method requires that we expand the relevant funtionin the neighbourhood of its dominant singularities. From this, singularityanalysis allows us to transfer the asymptoti expressions for the funtion tothat of its oeÆients.A routine omputation shows that of the four singularities of D(x) in(7), the losest one to the origin is r = 3�p52 . minimal modulus is r = 3�p52 .An expansion of D(x) around x = r, yields24p5 ��1 +p5�2 1p1� xr :By singularity analysis it follows that the oe�ients dn of D(x) satisfy asn!1, dn � 24p5 ��1 +p5�2 r�np�n: (9)7



Cruially, r�1 = 3+p52 . Therefore, (9) impliesdn � 24p5 ��1 +p5�2 1p�n � 3 +p52 !n : (10)Comparing (8) and (10), we �nd that the probability we are looking foris p1;2(n) = dnF 2n+1 � 53=42 1p�n: (11)So just as for unrestrited ompositions in the Introdution, we get a prob-ability that is equal to C=pn for some onstant C. One again, the eventthat two suh ompositions of n have the same number of pairs is likely inthe logarithmi sense.2.5 A onnetion with entral Whitney number of the feneposetThe fene poset An is a 2n-element poset with whose vertex set onsistsof verties fx1; x2; � � � ; xng and fy1; y2; � � � yng, and whose set of relationsonsists of xi � yi for all i, and xi � yi�1 for i � 2. The fene poset A5 isshown in Figure 3.
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Figure 3: The fene poset A5.In a partially ordered set P , the subposet I of P is alled an ideal ify 2 I and x � y imply x 2 I. If, in an n-element poset, i0; i1; � � � ; in denotethe number of ideals that have 0; 1; � � � ; n elements, then the numbers ijare alled the Whitney numbers of the poset. For the fene poset An, it isknown [4℄ that the hain of inequalitiesi0 � i1 � � � � in � in+1 � � � � � i2n8



holds. So the numbers in are not simply at the middle of the sequene, theyare also maximal. The numbers in are alled the entral Whitney numbers ofAn. This provided motivation for the authors of [4℄ to study these numbersfurther. They showed that if the number of n-element ideals of An is wn,with w0 = 1, then Pn�0wnxn = D(x), where D(x) is our D(x) de�nedearlier in this setion. Therefore, dn = wn for all n. This remarkable fatalls for a ombinatorial proof, espeially knowing that the wayPn�0wnxnwas found in [4℄ was not based on a ombinatorial reurrene; in that paper,that generating funtion was obtained as the diagonal series of a power seriesin two variables.We will now exhibit a bijetion g from to set In of n-element ideals of Anand the set Ln of lattie paths de�ned earlier in this setion. The bijetionis not obvious, but it is a true bijetion in that it requires no reursiveargument.Consider the two-element subposets fxi; yig of An. If I is an ideal of An,and S = fxi; yig, and we know the size of I \S, then we know the set I \Sitself. Indeed, if jI \ Sj = 1, then I \ S = fxig, sine I is an ideal, and ifjI \ Sj 6= 1, then the statement is obvious.For an ideal I of An, we de�ne the vetor z(I) = (z1(I); z2(I); � � � ; zn(I)),where zi = jI \ fxi; yigj. See Figure 4 for an example.
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Figure 4: If I is the ideal of the enirled elements, then z(I) = (1; 2; 1; 0; 2).The �rst step in ahieving the goal of this subsetion is the following ob-servation. A similar tehnique has been used in [4℄ to provide exat formulaefor the Whitney numbers of fene posets.Proposition 2 Let v = (v1; v2; � � � ; vn) be a vetor of length n, with oor-dinates equal to 0, 1, or 2. Then there is an ideal I 2 In so that z(I) = v ifand only if1. Pni=1 vi = n, and 9



2. if vi = 2, then vi+1 6= 0.Proof: Let us �rst assume that there exists an I 2 In so that z(I) = v.Then jI \ fxi; yigj = vi, so the sum of the vi must be n as this sum isequal to the size of I. Furthermore, if vi = 2, then yi 2 I, so, as I is anideal, xi+1 2 I, and therefore, vi+1 6= 0. This proves that the onditions areneessary.Now let v be a vetor satisfying the onditions. De�ne Iv as follows.1. If vi = 0, then xi =2 I, and yi =2 I,2. if vi = 1, then xi 2 I, and yi =2 I, and3. if vi = 2, then xi 2 I, and yi 2 I.Then I 2 An. Indeed, jIj = Pni=1 vi = n. Furthermore, I is an ideal sineon the one hand, the above onstrution implies that if yi 2 I, then xi 2 I,and, on the other hand, sine vi = 2 implies vi+1 6= 0, if yi 2 I, then xi+1 inI. 3So there is a natural bijetion between the set In and the set of vetors oflength n that have length n, oordinates 0, 1, or 2, and in whih a 2 is neverfollowed by a 0. In what follows, we will identify the elements of In withtheir vetors z(I). Now we are ready to de�ne the bijetion g : In ! Ln.Let I 2 In. Consider z(I). Say k of the oordinates of z(I) are equal to 2,and, therefore, n�2k are equal to 1 (this also implies that k are equal to 0).Then g(I) will be a lattie path onsisting of n�k steps, k of whih will haveweight 2, and, therefore, n � 2k of whih will have weight 1. The relativeorder of these steps will be given by the relative order of the oordinates ofz(I) that are equal to 2 or 1. For instane, if among the n� k oordinatesof z(I) that are equal to 2 or 1, the �rst, sixth, and eighth are equal to 2,then it will be the �rst, sixth, and eighth steps of g(I) that have weight 2.There remains the question of whih steps of g(I) will be horizontal,whih will be up steps, and whih will be down steps. This informationwill be gained from the positions of the oordinates of z(I) that are equalto 0. This part of the proof will remind some readers to the proof of theidentity �n�kk � = Pki=0 �n�2ki �� kk�i� = Pki=0 �n�2ki ��ki�. Reall that in z(I),no oordinate equal to 2 is immediately followed by a oordinate equal to0. Now onsider all oordinates of z(I) that are equal to 0 or 1. There arek oordinates equal to 0, and n � 2k equal to 1. These n � k oordinatesan be in �n�kk � di�erent orders, eah de�ned by the k-element subset Z �10



f1; 2; � � � ; n� kg of the positions of the 0s in this string of length n� k. LetZ1 = Z \ f1; 2; � � � ; n � 2kg and let Z2 = Z \ fn � 2k + 1; � � � ; n � kg. Ifr 2 Z1, then let the rth weight-1 step of g(I) be a down step; otherwise,let it be a horizontal step. Furthermore, if j + (n � 2k) 2 Z2, then let thejth weight-2 step of g(I) be horizontal; otherwise, let it be an up step. Thisompletes the de�nition of g(I).Theorem 1 The map g desribed above is a bijetion from In onto Ln.Proof: First, g indeed maps into Ln. The only thing that needs explanationis that g(I) indeed always ends on the horizontal axis, that is, g(I) has asmany up steps as down steps. Let i be the number of down steps of g(I);then i = jZ \ f1; 2; � � � ; n� 2kgj. The number of up steps is the number ofweight-2 steps that are not horizontal. The number of horizontal weight-2steps is jZ2j = jZ \ fn � 2k + 1; � � � ; n � kgj = jZj � i = k � i. Therefore,the number of up steps (neessarily of weight 2) is k � (k � i) = i as well.In order to show that g is a bijetion, we show that it has an inverse.Let L 2 Ln. We will reover the unique ideal I 2 In for whih g(I) = L.Clearly, it suÆes to reover z(I). Let us assume that L has i up steps, thenL has i down steps. Furthermore, let us say that L has k steps of weight 2,and n� 2k steps of weight 1.Then if g(I) = L, then z(I) must have k oordinates equal to 2, n� 2koordinates equal to 1, and k oordinates equal to 0. Furthermore, therelative order of the oordinates of z(I) that are equal to 2 or 1 has to bethe same as the relative order of the steps of L that are of weight 2 or 1.(This is possible in exatly one way.) Finally, beause of the onstrutionof g(I), the relative order of the oordinates of z(I) that are equal to 1 or0 must be as follows. In the string of length n � k of these oordinatesof z(I), the set Z of positions of the 0s must be equal to Z1 [ Z2, whereZ1 � f1; 2; � � � ; n� 2kg is the set of positions of the down steps among then�2k weight-1 steps, and Z2 � fn�2k+1; � � � ; n�kg is the set of positionsof the form (n�2k)+j, where the jth weight-2 step of L is a horizontal step.This is again possible in exatly one way. Finally, knowing the positions ofthe 0s and 1s in the string of all 0s and 1s, and the positions of the 1s and2s in the string of all 1s and 2s ompletely determines z(I), sine in z(I), no2 is ever diretly followed by a 0. 3
11



3 Compositions with all parts equal to a and bLet a < b be two positive integers, and let fa;b(n) denote the number ofompositions of n into parts equal to a or b. We an assume without loss ofgenerality that a and b are relatively prime to eah other, sine fka;kb(n) =fa;b(n=k) (just divide eah part by k). Then it is straightforward to provethe reurrene relation fa;b(n) = fa;b(n � a) + fa;b(n � b) for n � 1, withfa;b(0) = 1. Let Fa;b(x) denote the ordinary generating funtion of thesequene fa;b(n); then this yieldsFa;b(x) = 11� xa � xb : (12)Fortunately, the denominator of Fa;b(x) is not diÆult to handle. Thisis the ontent of the next lemma.Lemma 2 For any two relatively prime positive integers a < b, the polyno-mial p(x) = 1� xa � xb has a unique root � = �a;b of smallest modulus.Proof: We laim that p(x) always has a unique positive real root �, andthat � is the unique root of smallest modulus. First, on the set of positivereal numbers, the funtion q(x) = xa+xb is stritly monotone inreasing, soit annot equal 1 twie. Seond, q is a polynomial, so it is ontinous. Third,q(0) = 0 and q(1) = 2, so there exist a unique positive real number � (whihis between 0 and 1) so that q(�) = 1, and so p(�) = 0.Now let z be any other root of p(x); note that this means that z is nota positive real number. Then za + zb = 1, therefore jza + zbj = 1, sojzja + jzjb = q(jzj) � 1: (13)If this inequality is strit, then by the previous paragraph, jzj > �, and weare done. The only way that the triangle-inequality of (13) ould be notstrit is by both za and zb being positive real numbers (do not forget thattheir sum is 1!). That would mean that the zka and zlb are both positivereal numbers, for all integers k and l. However, sine a and b are relativelyprime, we an hoose k and l so that ka+ lb = 1, implying that zka+lb = zis a positive real number, whih is a ontradition. 3Now by expanding Fa;b(x) around the dominant singularity z = � we�nd the following. Fa;b(x) � 1a�a�1 + b�b�1 � 1(�� x) :Then by applying singularity analysis [3℄ we obtain12



Corollary 2 Let a and b be positive integers, and assume without loss ofgenerality that they are relatively prime to eah other. Then with � as de�nedabove, fa;b(n) � ��n�1a�a�1 + b�b�1 :Now we return to pairs of ompositions with the same number of parts.Let da;b(n) denote the number of pairs of (X;Y ) of ompositions of n intoparts equal to a or b so that X and Y have the same number of parts. Setda;b(0) = 1. Again, we an assume that a and b are relatively prime to eahother.Let Da;b(x) =Pn�0 da;b(n)xn be the ordinary generating funtion of thesequene of the numbers da;b(n). Then an argument analogous to that seenin the previous setion for the speial ase of a = 1 and b = 2 yields theequality Da;b(x) = 1p(1� xb + xa)2 � 4xa+b : (14)We are interested in determining the ratio pa;b(n) = da;b(n)fa;b(n)2 ; in otherwords, the probability that a randomly seleted ordered pair of ompositionsof n into parts a or b have the same number of parts.Denote by da;b(x) the polynomial under the square roots sign in thedenominator of Da;b(x); that is, Da;b(x) = 1pda;b(x) .In order to disuss the fatorization of da;b(x), we need the followingsimple but useful observation.Proposition 3 Let h(x) = Pki=0 aixi be a polynomial, and let h�(x) =Pki=0 aix2i. Then the omplex number z2 is a root of h(x) if and only if zand �z are both roots of h�(x).In partiular, for any positive real number z, it holds that h�(x) has 2mroots of modulus z if and only if h(x) has m roots of modulus z2.Therefore, when looking for the root(s) of smallest modulus of da;b(x),we may look for the roots of d�(x) �rst. The latter are easier to �nd sined�(x) = (1� x2a � x2b)2 � 4x2(a+b)= (1� x2a � x2b � 2xa+b)(1 � x2a � x2b + 2xa+b)= (1� xa � xb)(1 + xa + xb)(1� xa + xb)(1 + xa � xb):It now follows from the same argument that we used to prove Lemma2 that d�(x) always has two roots of smallest modulus, namely � and ��,13



where � is the unique root of smallest modulus of 1 � xa � xb. Therefore,Proposition 3 implies the following.Theorem 2 The polynomial da;b(x) has a unique root of smallest modulus,and that root is �2.So the numbers da;b(n) and fa;b(n)2 have similar growth rates in thesense that limn!1 (da;b(n))1=n = limn!1 �f2a;b(n)�1=n = ��2.A more preise omputation using singularity analysis, shows that asz ! �2,Da;b(x) � 1p4(a+ b)�2a+2b�2 + 2 (��2a � �2b + 1) (a�2a�2 + b�2b�2)� 1q1� x�2from whih we dedue thatda;b(n) � ��2n�1p4(a+ b)�2a+2b�2 + 2 (��2a � �2b + 1) (a�2a�2 + b�2b�2)p�n:We onlude that the probability that two ompositions of n into partsa and b have the same number of parts ispa;b(n) = da;b(n)f2a;b(n) � Cp�n;whereC = � �a�a�1 + b�b�1�2p4(a+ b)�2a+2b�2 + 2 (��2a � �2b + 1) (a�2a�2 + b�2b�2) :In the speial ase a = 1 and b = 2, � = 12 ��1 +p5� and we reoverthe asymptoti estimate for p1;2(n).4 Diagonals of bivariate generating funtionsLet (n1; n2; k) denote the number of pairs of ompositions both with k partsin N, where the �rst part of the pair is a ompositions of n1 and seond partis a omposition of n2. Then we have the trivariate generating funtion11� y s1�s t1�t = Xn1;n2;k�0  (n1; n2; k) yksn1tn2 :14



For our purposes the value of k is not important so we an onentrateon the bivariate generating funtion for (n1; n2), the number of pairs ofompositions of n1 and n2, respetively, with the same number of parts,given by F (s; t) := Xn1;n2�0  (n1; n2) sn1tn2 = 11� st(1�s)(1�t) :More generally if we restrit the parts in the ompositions to lie in some�xed subset A of N then we must onsiderFA(s; t) := Xn1;n2�0 A (n1; n2) sn1tn2 = 11� �Pa2A sa� �Pa2A ta� :What we are atually interested in is the diagonal of FA(s; t) given bythe single variable generating funtion GA(x) :=Pn�0 A (n; n)xn.Firstly, we note that for any �nite set A, FA(s; t) is a rational funtionof s and t and hene by Theorem 6.3.3 of Stanley [6℄, GA(x) is an algebraifuntion of x.In the sequel we will study ertain lasses of in�nite sets A for whih wean obtain expliit algebrai expressions for GA(x).We apply the diagonalisation tehnique as desribed in Stanley to �ndexpliit algebrai generating funtions for pairs of ompositions with thesame number of parts where all parts are at least d, with d any positiveinteger. In this ase the bivariate generating funtion will be denoted byFd(s; t) := Xn1;n2�0  (n1; n2) sn1tn2 = 11� sdtd(1�s)(1�t) :Note that for d = 2, ompositions of n � 3 with all parts at least 2 are equalin number to ompositions of n� 2 with all parts either 1 or 2.Using the approah detailed in StanleyGd(x) = [s0℄Fd(s; x=s) = 12�i Zjsj=� F (s; x=s)dssfor some � > 0.By the residue theorem it follows that Gd(x) is equal to the sum ofresidues of the integrand summed over all singularities inside the irle jsj =�. In the ase of Gd(x) the integrand Fd(s; x=s)=s beomes(s� 1)(s� x)s (sxd � sx+ x+ s2 � s) :15



The poles are at s = 0 and at the root of the quadrati equation s2 � s(1 +x� xd) + x = 0 that approahes 0 as x! 0, namelys0 := 12 �1 + x� xd �q(xd � x� 1)2 � 4x� :The residue at s0 is(s0 � 1)(s0 � x)s0 (xd � x+ 2s0 � 1) = xdq(1 + x� xd)2 � 4x:The residue at s = 0 is 1, so thatGd(x) = 1 + xdq(1 + x� xd)2 � 4x:4.1 Asymptoti estimatesFirstly we onsider the number of ompositions d(n) of n with parts at leastd, whih has generating funtion11� sd1�s = s� 1sd + s� 1 :Let � denote the positive root of least modulus of sd + s� 1 = 0. Then bysingularity analysis d(n) � ��1�(d�d�1+1)��n and onsequently the number ofall pairs of suh ompositions of n isd(n)2 � (�� 1)2�2 (d�d�1 + 1)2��2n:Now onsider the disriminant of the square-root in the expression forGd(x), namely �xd � x� 1�2 � 4x. For odd values of d this fators as�1� x� 2x d+12 � xd��1� x+ 2x d+12 � xd� ;and for even d it fators as�1� x� 2xd=2 + xd��1� x+ 2xd=2 + xd� :First we onsider the ase of odd d. Here the dominant pole omes fromthe disriminant fator 1�x�2x d+12 �xd. Setting x = z2 we an fator this16



further as ��zd � z + 1� �zd + z + 1� whih has real roots of least modulusfor z = � and z = ��, that is, for x = �2. We must therefore ompute thesingular expansion of Gd(x) as x! �2.Now as x! �2, xdq1� x� xd + 2x d+12 � �2dp(��d + �+ 1) (�d � �+ 1) ;whereas 1q1� x� xd � 2x d+12 � 1�p(�d�1 + 1) (d�d�1 + 1) 1q1� x�2 :ThereforeGd(x) � �2d�1p(�d�1 + 1) (d�d�1 + 1)p(��d + �+ 1) (�d � �+ 1) 1q1� x�2 :Hene by applying singularity analysis, for d oddd(n; n) � �2d�1p(�d�1 + 1) (d�d�1 + 1)p(��d + �+ 1) (�d � �+ 1) ��2np�n:Next we onsider the ase of d even. Here the dominant pole omes fromthe disriminant fator 1 � x � 2xd=2 + xd. Setting x = z2 we an fatorthis further as �zd � z � 1� �zd + z � 1� whih again has real roots of leastmodulus for z = � and z = ��. Then as x! �2 we �ndGd(x) � �2d�1p(�d � �+ 1) (�d + �+ 1)p1� d�d�2 (�d � 1) 1q1� x�2 :Hene by applying singularity analysis we have for d even,d(n; n) � �2d�1p(�d � �+ 1) (�d + �+ 1)p1� d�d�2 (�d � 1) ��2np�n:In onlusion, we have shown the following.Theorem 3 The asymptoti proportion of pairs of ompositions of n withthe same number of parts and all parts at least d, is given when d is odd by�2d+1 �d�d�1 + 1�2(�� 1)2p(�d�1 + 1) (d�d�1 + 1)p(��d + �+ 1) (�d � �+ 1) 1p�n17



and for d even by �2d+1 �d�d�1 + 1�2(�� 1)2p(�d � �+ 1) (�d + �+ 1)p1� d�d�2 (�d � 1) 1p�n;where � denotes the smallest positive root of the equation sd + s� 1 = 0.Remark: By subtrating d� 1 from eah part of a partition of n withparts at least d, we an also obtain the exat expressionsd(n) = bn�1d�1 Xk=1 � n� (d� 1)k � 1k � 1 �and d(n; n) = bn�1d�1 Xk=1 � n� (d� 1)k � 1k � 1 �2 :4.2 Some further expliit algebrai generating funtionsIn a similar manner we an apply the diagonalisation tehnique to �nd alge-brai generating funtions for pairs of ompositions with the same numberof parts, where all parts are odd and at least d, with d any odd positiveinteger. In this ase the bivariate generating funtion to onsider isXn1;n2�0 o (n1; n2) sn1tn2 = 11� sdtd(1�s2)(1�t2) :The diagonal is then omputed to beXn�0 o (n; n)xn = 1 + xdq(1 + x2 � xd)2 � 4x2 :Then using singularity analysis as before, we �nd that the asymptotiproportion of pairs of ompositions of n with the same number of parts, allparts odd and at least d, is given by�2d+1 �d�d�1 + 2��2(�2 � 1)2pd�2(d�1) � 2�2 + 2p1� �2d + �4 + 2�2 1p�n;where � denotes the smallest positive root of the equation sd + s2 � 1 = 0.18
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