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MOST PRINCIPAL PERMUTATION CLASSES,

AND t-STACK SORTABLE PERMUTATIONS,

HAVE NONRATIONAL GENERATING FUNCTIONS

M. BÓNA

Abstract. We prove that for any fixed n, and for most permutation patterns q, the

number Avn,`(q) of q-avoiding permutations of length n that consist of ` skew blocks

is a monotone decreasing function of `. We then show that this implies that for most
patterns q, the generating function

∑
n≥0 Avn(q)zn of the sequence Avn(q) of the

numbers of q-avoiding permutations is not rational. Placing our results in a broader

context, we show that for rational power series F (z) and G(z) with nonnegative
real coefficients, the relation F (z) = 1/(1 − G(z)) is supercritical, while for most

permutation patterns q, the corresponding relation is not supercritical.

1. Introduction

We say that a permutation p contains the pattern q = q1q2 . . . qk if there is a
k-element set of indices i1 < i2 < · · · < ik so that pir < pis if and only if qr < qs.
If p does not contain q, then we say that p avoids q. For example, p = 3752416
contains q = 2413, as the first, second, fourth, and seventh entries of p form the
subsequence 3726, which is order-isomorphic to q = 2413. Let Avn(q) be the
number of permutations of length n that avoid the pattern q. In general, it is very
difficult to compute, or even describe, the numbers Avn(q), or their sequence as n
goes to infinity. As far as the generating function Aq(z) =

∑
n≥0 Avn(q)zn goes,

there are known examples when it is algebraic, and known examples when it is not
algebraic. The question whether Aq(z) is always differentiably finite was raised in
1996 by John Noonan and Doron Zeilberger, and is still open.

In this abstract, we describe a proof for the theorem that for patterns q =
q1q2 . . . qk, where k > 2 and {q1, qk} 6= {1, k}, the generating function Aq(z)
is never rational. It is plausible to think that our result holds for the less than
1/[k(k−1)] of patterns of length k for which we cannot prove it. On the other hand,
the statement obviously fails for the pattern q = 12, since for that q, we trivially
have that Avn(q) = 1 for all n, so Aq(z) = 1/(1 − z). The set of permutations
of any length that avoid a given pattern q is often called a principal permutation
class, explaining the title of this paper. As rational functions are differentiably
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finite, this paper excludes a small subset of differentiably finite power series from
the set of possible generating functions of principal permutation classes.

Our main tool will be a theorem that is interesting on its own right. We say
that a permutation p is skew indecomposable if it is not possible to cut p into two
parts so that each entry before the cut is larger than each entry after the cut. For
instance, p = 3142 is skew indecomposable, but r = 346512 is not as we can cut it
into two parts by cutting between entries 5 and 1, to obtain 3465|12.

If p is not skew indecomposable, then there is a unique way to cut p into
nonempty skew indecomposable strings s1, s2, . . . , s` of consecutive entries so that
each entry of si is larger than each entry of sj if i < j. We call these strings si
the skew blocks of p. For instance, p = 67|435|2|1 has four skew blocks, while skew
indecomposable permutations have one skew block.

The number of skew blocks of a permutation is of central importance for this
paper. For permutations with no restriction, it is easy to prove that almost all
permutations of length n are skew indecomposable. We prove that if q is a skew
indecomposable pattern, and n is any fixed positive integer, then the number
Avn,`(q) of q-avoiding permutations of length n that consist of ` skew blocks is
a monotone decreasing function of `. That is, as the number ` of skew blocks
increases, the number of q-avoiding permutations with ` skew blocks decreases.

Then we place our results into a broader context by discussing them from the
perspective of supercritical relations, which we introduce in Definition 6.1. We
show that our results imply that on the one hand, rational generating functions
lead to supercritical relations (Theorem 6.3), while for most principal permuta-
tion classes, the corresponding relations defined by Aq(z) are not supercritical
(Theorem 6.2), proving that Aq(z) is not rational.

Theorem 6.3 can be used to show that some other combinatorial generating
functions are not rational. Present author has recently [5] used this technique to
prove that for all t, the generating function counting t-stack sortable permutations
of length n is not rational. Several equivalent definitions of such permutations can
be found in [4]; here we will just give a quick one. Let p = LnR be a permutation
of length n, where L and R denote the possibly empty strings on the left and right
of n. Then we define the map s recursively, by s(p) = s(L)s(R)n, with s(1) = 1.
Finally, p is t-stack sortable if st(p) = 12 . . . n.

2. Preliminaries

Proposition 2.1. Let q be any skew indecomposable pattern. If, for all positive
integers n, the inequality

(1) Avn,2(q) ≤ Avn,1(q)

holds, then for all positive integers n, and all positive integers `, the inequality

Avn,`+1(q) ≤ Avn,`(q)

holds.
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This follows from the way in which the product of generating functions is com-
puted.

If q = q1q2 . . . qk is a pattern, let qrev denote its reverse qkqk−1 . . . q1, and let
qc denote its complement (k + 1 − q1)(k + 1 − q2) . . . (k + 1 − qk). For instance,
if q = 25143, then qrev = 34152, and qc = 41523. Recall that Avn(q) denotes the
number of permutations of length n that avoid q. It is then obvious that for all
patterns q, the equalities Avn(q) = Avn(qrev) = Avn(qc) hold. These equalities,
and similar others, will be useful for us because of the following fact.

Proposition 2.2. Let q and q′ be two skew indecomposable patterns so that the
equality

(2) Avn(q) = Avn(q′)

holds for all n ≥ 1. Then for all positive integers n, and for all positive integers
` ≤ n, the equality

(3) Avn,`(q) = Avn,`(q
′)

holds.

3. The pattern 132

Next we mention the interesting fact that when q = 132, then in (1), equality
holds if n > 1.

Lemma 3.1. Let n ≥ 2. Then the equality

Avn,2(132) = Avn,1(132)

holds.

Indeed, just take a permutation counted by the left-hand side, and put its
largest entry into the last position. It is easy to show that this map is injective.

Now Proposition 2.1 and Lemma 3.1, and the fact that 1 = Av1,1(132) >
Av1,2(132) = 0 together immediately imply the following.

Theorem 3.2. For all positive integers n, and all positive integers ` ≤ n− 1,
the inequality

Avn,`+1(132) ≤ Avn,`(132)

holds.

4. The case containing most patterns

In the last section, we discussed a map that took a permutation with two skew
blocks and moved its largest entry in its last position. For 132-avoiding permu-
tations, this led to a bijection between two sets in which we were interested. In
this section, we will replace 132 by a pattern q coming from a very large set of
patterns. Furthermore, instead of moving the largest entry to the back, we will
move the last entry of the first skew block to the end of the whole permutation.
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(In the special case of q = 132, that entry happens to be the largest entry as well.)
We will be able to show that this map is an injection from Avn,2(q) to Avn,1(q).

For the rest of this section, the pattern q is assumed to be skew indecomposable.
Let us call a pattern q = q1q2 . . . qk good if there does not exist a positive integer
i ≤ k−1 so that {qk−i, qk−i+1, . . . , qk−1} = {1, 2, . . . , i}. That is, q is good if there
is no proper segment immediately preceding its last entry whose entries would
be the smallest entries of q. For instance, q = 132 and q = 3142 are good, but
q = 1324 and q = 35124 are not, because of the choices of i = 3 in the former, and
i = 2 in the latter. In particular, q is never good if qk = k, because then we can
choose i = k − 1.

Lemma 4.1. Let q be a good pattern. Then for all positive integers n, the
inequality

Avn,2(q) ≤ Avn,1(q)

holds.

In this case, we take the last entry of the first skew block, and place it in the
last position, then prove that this map is an injection.

Now we are going to extend the reach of Lemma 4.1 to other patterns.

Lemma 4.2. Let q = q1 . . . qk be a skew indecomposable pattern so that q1 6= 1
or qk 6= k or both. The the inequality

Avn,2(q) ≤ Avn,1(q)

holds.

This can be done by symmetries such as reverse, complement, and inverse.
Lemma 4.2 does not cover patterns that start with their minimal element and

end with their largest element, like 1324. However, if q is such a pattern, we can
still prove the statement of Lemma 4.2 for q if q is Wilf-equivalent to a pattern
q′ that is covered by Lemma 4.2. Indeed, this is an immediate consequence of
Proposition 2.2. So, for instance, the statement of Lemma 4.2 also holds for all
monotone patterns 12 . . . k, since it is well-known [1] that 12 . . . k is Wilf-equivalent
to the pattern 12 . . . (k − 2)k(k − 1).

The proof of the monotonicity result announced in the introduction is now
immediate.

Theorem 4.3. Let q = q1 . . . qk be a skew indecomposable pattern so that at
least one of the following conditions hold

1. q1 6= 1, or
2. qk 6= k, or
3. q1 = 1 and qk = k, but q is Wilf-equivalent to a skew-indecomposable pattern

in which the first entry is not 1 or the last entry is not k.

Then the inequality

Avn,`+1(q) ≤ Avn,`(q)

holds for all nonnegative integers n and all positive integers `.
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5. Why Aq(z) is not rational

We can now prove the result mentioned in the title of the paper.

Theorem 5.1. Let q = q1q2 . . . qk be a pattern so that either {1, k} 6= {q1, qk},
or q is Wilf-equivalent to a pattern v = v1v2 . . . vk so that {1, k} 6= {v1, vk} Then
the generating function Aq(z) is not rational.

Proof. First, note that we can assume that q is skew indecomposable. Indeed,
if q is not, then qrev is, and clearly, Aq(z) = Aqrev (z).

So let q be skew indecomposable, and let us assume that Aq(z) is rational. Then
the power series A1,q(z) is also rational. Let r > 0 be the radius of convergence of
A1,q(z). We know that r > 0, since we know [7] that Avn,1(q) ≤ Avn(q) ≤ cnq for
some constant cq. As the coefficients of A1,q(z) are all nonnegative real numbers,
it follows from Pringsheim’s theorem (Theorem IV.6 in [6]) that the positive real
number r is a singularity of A1,q(z). As A1,q(z) is rational, r is a pole of A1,q(z),
so limz→r A1,q(z) = ∞. Therefore, there exists a positive real number z0 < r so
that A1,q(z0) > 1. Therefore,∑

n≥1

Avn,1(q)zn0 = A1,q(z0) < A1,q(z0)2 = A2,q(z0) =
∑
n≥2

Avn,2(q)zn0 ,

contradicting the fact, proved in Theorem 4.3, that for each n, the coefficient of
zn in the leftmost powers series is at least as large as it is in the rightmost power
series. �

The elegant argument in the previous paragraph is due to Robin Pemantle
[10]. A significantly more complicated argument proves a stronger statement.
The interested reader should consult [2] for details.

6. Broader context: Supercritical relations

We will place our results into the broader context of supercritical relations. Readers
who are interested to learn more about this subject are invited to consult sections
V.2 and VI.9 of [6].

Definition 6.1. Let F and G be two generating functions with nonnegative
real coefficients that are analytic at 0, and let us assume that G(0) = 0. Then the
relation

F (z) =
1

1−G(z)

is called supercritical if G(RG) > 1, where RG is the radius of convergence of G.

Note that as the coefficients of G(z) are nonnegative, G(RG) > 1 implies that
G(α) = 1 for some α ∈ (0, RG). So, if the relation between F and G described
above is supercritical, then the radius of convergence of F is less than that of G,
therefore, the exponential growth rate of the coefficients of F is larger than that
of G.
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Theorem 6.2. Let q be any permutation pattern satisfying the conditions of
Theorem 4.3. Then the relation

Aq(z) =
1

1−A1,q(z)

is not supercritical.

Proof. It is immediate from Theorem 4.3 that we have

Avn(q) =

n∑
`=1

Avn,`(q) = nAvn,1(q),

implying that the sequences Avn(q) and Avn,1(q) have the same exponential order.
By Corollary 6.2, that means that the relation between their generating functions
cannot be supercritical. �

On the other hand, combinatorial generating functions that are rational lead to
supercritical relations, as the following extension of Theorem 5.1 shows.

Theorem 6.3. Let G(z) be a rational power series with nonnegative real coef-
ficients that satisfies G(0) = 0. Then the relation

F (z) =
1

1−G(z)

is supercritical.

Proof. If G(z) is a polynomial, then RG = ∞, so G(RG) = ∞ > 1, and our
claim is proved. Otherwise, G(z) is a rational function that has at least one
singularity, and all its singularities are poles. Let RG be a singularity of smallest
modulus. Then G(RG) =∞ > 1, completing our proof. �

Now we see that Theorem 5.1 immediately follows from the two results in this
section. Indeed, if q is a pattern satisfying the conditions of Theorem 4.3, then
Aq(z) cannot be rational, because if it was, then so would be A1,q(z). Therefore,
by Theorem 6.3, the relation Aq(z) = 1

1−A1,q(z)
would be supercritial, but we know

by Theorem 6.2 that it is not.

7. Further directions

It goes without saying that it is an intriguing problem to prove Lemma 4.2 for the
remaining patterns. Of course, Theorem 5.1 could possibly be proved by other
means, but numerical evidence seems to suggest that Theorem 5.1 will hold even
for patterns that start with their minimum entry and end in their largest entry.
Interestingly, the shortest patterns for which we cannot prove Theorem 5.1 are
1324 and 4231, which also happen to be the shortest patterns for which no exact
formula is known for Avn(q).

It is important to point out that our results do not hold at all for permu-
tation classes that are generated by more than one pattern. For instance, let
Avn(123, 132) denote the number of permutations of length n that avoid both 123
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and 132. It is then easy to prove that Avn(123, 132) = 2n−1, so A123,132(z) =
(1− z)/(1− 2z), a rational function. Note that in this case, Avn,1(123, 132) = 1,
since the only such permutation is (n − 1)(n − 2) . . . 1n, while Avn,2(123, 132) =
n− 1, so Lemma 4.2 does not hold.
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