Membership Publications Meetings Competitions Community Programs News

Handbook of Enumerative Combinatorics

1HANDBOOK OF ENUMERATTVE COMEINATORICS	Publisher:	Chapman \& Hall/CRC
H, 17 Tr	Publication Date:	2015
	Number of Pages:	1061
rnm	Format:	Hardcover
日鴯m	Series:	Discrete Mathematics and Its Application
	Price:	\$149.95
	ISBN:	9781482220858
	Category:	Handbook
MAA R	EW	LE OF CONTENTS

[Reviewed by Mark Hunacek, on 07/29/2015]
CRC Press's Discrete Mathematics and its Applications series now numbers well over 70 books, covering just about any area of mathematics that could reasonably be considered discrete mathematics, including combinatorics, graph theory, number theory, cryptography, linear algebra, applied abstract algebra and even mathematical logic. Among these titles are a handful of books denominated "Handbooks", which include (just to mention the ones that I have some personal knowledge of) The Handbook of Linear Algebra , Second Edition (HLA), The Handbook of Discrete and Combinatorial Mathematics (HDCM), and The Handbook of Graph Theory, Second Edition (HGT). (Full disclosure: my wife Leslie Hogben is the editor of HLA, and I contributed a chapter to it.) And now we have the book under review (HEC), the newest Handbook in this series.

These Handbooks will surprise any reader who imagines a "handbook" to be a short, easily portable, volume, like an instruction manual. These books, by contrast, might reasonably be described as encyclopedias of their respective subjects, arranged to provide quick information in an easily accessible manner. They are all oversized books, the size of telephone books; HLA, for example, clocks in at almost 2000 pages; HEC, the book now under review, is shorter, only about 1050 pages long.

The three handbooks (HLA, HDCM, HGT) listed in the first paragraph above follow a fairly formal structure: the book is divided into chapters, written by different authors; each chapter is subdivided into sections, each of which consists of Definitions, Examples and Facts, labeled as such and separately grouped. The "facts" are theorems and are given without proof, but with references to where proofs may be found. The "examples" sometimes contain some degree of justification, but do not always do so.

HEC doesn't quite follow this rigid format; it does, however, follow one that is similar to it in that statements of theorems, definitions and examples are emphasized. There are fewer (in this case, 15) chapters, but they are much longer.

Instead of listing "definitions", "facts" and "examples" in separate categories, the text has a more narrative, textbook, feel to it, with theorems labeled as such and, in another departure from the formal Handbook format, occasionally proved. There were even a few times when exercises appeared, though not in any kind of formal way.

A link above this review gives the table of contents of this book, so it seems unnecessary to specify here the topics that are covered. Suffice it to say that a great many topics in enumerative combinatorics are discussed, by authors who are recognized authorities in their respective areas. I am not, by any stretch of the imagination, an expert in combinatorics, but I did study it at the graduate level and teach it at the undergraduate, and at least on the basis of that limited experience, I cannot think of any topic that I would like to have seen presented here that the book omits. The chapters discuss not only methods (algebraic, geometric and analytic) in the study of enumerative combinatorics, but also objects that lend themselves to study along these lines. Some of these objects (e.g., trees, planar maps) are fairly well-known to a general audience, but as the book progresses, more specialized objects
(e.g., parking functions, Young tableaux) are discussed.

The first chapter is quite long, about 175 pages (essentially the size of a slim book by itself), and surveys algebraic and geometric methods in enumerative combinatorics: generating functions, linear algebra (especially determinants), partially ordered sets, hyperplanes, matroids. The remaining chapters are shorter, ranging generally from 50 to 70 pages each.

The book is written so as to be accessible to a wide audience: each chapter eventually ventures into fairly specialized results, but starts at a point where non-specialists should be able to understand the various ideas. (The first chapter, for example, even includes, in passing, a definition of the binomial coefficients.) Other topics that one might encounter in an introductory course in combinatorics - Stirling numbers, for example - are also defined here, so a prior course in combinatorics is not necessary for understanding a reasonable amount of material here. However, because combinatorics intersects a number of other areas of mathematics (examples: abstract algebra, linear algebra and knot theory are mentioned in chapter 1; complex analysis in chapter 2; representation theory in chapter 14 ; commutative algebra in chapter 15), it would be advisable for a reader to have a reasonably broad understanding of mathematics, say at the level of early graduate work.

Needless to say, this is not a book that will likely be read cover-to-cover by most people; it is intended as a resource for people needing quick facts about a subject. In this regard, it succeeds admirably; this will clearly be a book that anybody with a serious interest in combinatorics will want to have on his or her bookshelf, and of course it belongs in any self-respecting university library. Having seen firsthand what it takes to edit a Handbook like this, I know that Miklós Bóna must have invested a great deal of time and effort in the creation of this volume, as did the authors of the individual chapters. Their efforts have not been in vain; this is a valuable book.

Mark Hunacek (mhunacek@iastate.edu) teaches mathematics at Iowa State University.

METHODS

Algebraic and Geometric Methods in Enumerative Combinatorics

Introduction
What is a Good Answer?
Generating Functions
Linear Algebra Methods
Posets
Polytopes
Hyperplane Arrangements
Matroids
Acknowledgments

Analytic Methods; Helmut Prodinger

Introduction
Combinatorial Constructions and Associated Ordinary Generating Functions
Combinatorial Constructions and Associated Exponential Generating Functions
Partitions and Q-Series
Some Applications of the Adding a Slice Technique
Lagrange Inversion Formula
Lattice Path Enumeration: The Continued Fraction Theorem
Lattice Path Enumeration: The Kernel Method
Gamma and Zeta Function
Harmonic Numbers and Their Generating Functions
Approximation of Binomial Coefficients
Mellin Transform and Asymptotics of Harmonic Sums
The Mellin-Perron Formula
Mellin-Perron Formula: Divide-and-Conquer Recursions
Rice's Method
Approximate Counting
Singularity Analysis of Generating Functions
Longest Runs in Words
Inversions in Permutations and Pumping Moments
Tree Function
The Saddle Point Method
Hwang's Quasi-Power Theorem

TOPICS

Asymptotic Normality in Enumeration; E. Rodney Canfield
The Normal Distribution
Method 1: Direct Approach

Method 2: Negative Roots
Method 3: Moments
Method 4: Singularity Analysis
Local Limit Theorems
Multivariate Asymptotic Normality
Normality in Service to Approximate Enumeration
Trees; Michael Drmota
Introduction
Basic Notions
Generating Functions
Unlabeled Trees
Labeled Trees
Selected Topics on Trees

Planar maps; Gilles Schaeffer
What is a Map?
Counting Tree-Rooted Maps
Counting Planar Maps
Beyond Planar Maps, an Even Shorter Account
Graph Enumeration; Marc Noy
Introduction
Graph Decompositions
Connected Graphs with Given Excess
Regular Graphs
Monotone and Hereditary Classes
Planar Graphs
Graphs on Surfaces and Graph Minors
Digraphs
Unlabelled Graphs

Unimodality, Log-Concavity, Real-Rootedness and Beyond; Petter Brándén
Introduction
Probabilistic Consequences of Real-Rootedness
Unimodality and G-Nonnegativity
Log-Concavity and Matroids
Infinite Log-Concavity
The Neggers-Stanley Conjecture
Preserving Real-Rootedness
Common Interleavers
Multivariate Techniques
Historical Notes

Words; Dominique Perrin and Antonio Restivo
Introduction
Preliminaries
Conjugacy
Lyndon words
Eulerian Graphs and De Bruijn Cycles
Unavoidable Sets
The Burrows-Wheeler Transform
The Gessel-Reutenauer Bijection
Suffix Arrays
Tilings; James Propp
Introduction and Overview
The Transfer Matrix Method
Other Determinant Methods
Representation-Theoretic Methods
Other Combinatorial Methods
Related Topics, and an Attempt at History
Some Emergent Themes
Software
Frontiers
Lattice Path Enumeration; Christian Krattenthaler
Introduction
Lattice Paths Without Restrictions
Linear Boundaries of Slope 1
Simple Paths with Linear Boundaries of Rational Slope, I
Simple Paths with Linear Boundaries with Rational Slope, II
Simple Paths with a Piecewise Linear Boundary
Simple Paths with General Boundaries

Elementary Results on Motzkin and Schroder Paths
A continued Fraction for the Weighted Counting of Motzkin Paths
Lattice Paths and Orthogonal Polynomials
Motzkin Paths in a Strip
Further Results for Lattice Paths in the Plane
Non-Intersecting Lattice Paths
Lattice Paths and Their Turns
Multidimensional Lattice Paths
Multidimensional Lattice Paths Bounded by a Hyperplane
Multidimensional Paths With a General Boundary
The Reflection Principle in Full Generality
Q-Counting Of Lattice Paths and Rogers-Ramanujan Identities
Self-Avoiding Walks
Catalan Paths and q; t-enumeration; James Haglund
Introduction to q-Analogues and Catalan Numbers
The q; t-Catalan Numbers
Parking Functions and the Hilbert Series
The q; t-Schröder Polynomial
Rational Catalan Combinatorics
Permutation Classes; Vincent Vatter
Introduction
Growth Rates of Principal Classes
Notions of Structure
The Set of All Growth Rates

Parking Functions; Catherine H. Yan
Introduction
Parking Functions and Labeled Trees
Many Faces of Parking Functions
Generalized Parking Functions
Parking Functions Associated with Graphs
Final Remarks
Standard Young Tableaux; Ron Adin and Yuval Roichman
Introduction
Preliminaries
Formulas for Thin Shapes
Jeu de taquin and the RS Correspondence
Formulas for Classical Shapes
More Proofs of the Hook Length Formula
Formulas for Skew Strips
Truncated and Other Non-Classical Shapes
Rim Hook and Domino Tableaux
q-Enumeration
Counting Reduced Words
Appendix 1: Representation Theoretic Aspects
Appendix 2: Asymptotics and Probabilistic Aspects
Computer Algebra; Manuel Kauers
Introduction
Computer Algebra Essentials
Counting Algorithms
Symbolic Summation
The Guess-and-Prove Paradigm
Index

Log in to post comments
< ShoreThis'

MEMBERSHIP	PUBLICATIONS	MEETINGS	COMPETITIONS	
Membership Categories	Periodicals	Calendar of Events	About AMC	
Become a Member	Books	MAA MathFest	FAQs	
Membership Renewal	eBooks	Joint Mathematics Meetings	Events Calendar	
Member Discount Programs	Textbooks	Propose a Session	AMC Contests	Join our Mailing List
MAA Member Lookup	MAA Reviews	MAA Section Meetings	Registration	
	Mathematical Communication	Carriage House Meeting Space	Putnam Competition	
	Information for Libraries		AMC Resources	
	Author Resources		Statistics \& Awards	
COMMUNITY	PROGRAMS	NEWS	ABOUT MAA	Mathematical Association of
MAA Sections	Students	MAA Math Alert	MAA History	P: (800) 331-1622
SIGMAAs	High School Teachers	MAA Social Media	Governance	F: (240) 396-5647
Department Liaisons	Faculty and Departments	RSS	Policies and Procedures	E: maaservice@maa.org
Student Chapters	Underrepresented Groups	Math in the News	Advocacy	
Columns	MAA Awards	On This Day	Support MAA	Copyright © 2015
	MAA Grants		Our Partners	
			Advertise with MAA	Thanks to NSF and MathDL
			Employment Opportunities	
			Staff Directory	rms of Use
			Contact Us	Privacy Policy
				Webmaster
				Mobile Version

