
On Three Di�erent Notions of MonotoneSubsequenesMikl�os B�onaDepartment of MathematisUniversity of FloridaGainesville FL 32611-8105bona�math.u.edu �AbstratWe review how the monotone pattern ompares to other patternsin terms of enumerative results on pattern avoiding permutations.We onsider three natural de�nitions of pattern avoidane, give anoverview of lassi and reent formulas, and provide some new resultsrelated to limiting distributions.1 IntrodutionMonotone subsequenes in a permutation p = p1p2 � � � pn have been thesubjet of vigorous researh for over sixty years. In this paper, we willreview three di�erent lines of work. In all of them, we will onsider inreasingsubsequenes of a permutation of length n that have a �xed length k. Thisis in ontrast to another line of work, started by Ulam more than sixtyyears ago, in whih the distribution of the longest inreasing subsequeneof a random permutation has been studied. That diretion of researh hasreently reahed a high point in the artile [4℄ of Baik, Deift and Johansson.The three diretions we onsider are distinguished by their de�nition ofmonotone subsequenes. We an simply require that k entries of a permu-tation inrease from left to right, or we an in addition require that thesek entries be in onseutive positions, or we an even require that they beonseutive integers and be in onseutive positions.�Partially supported by an NSA Young Investigator Award.1



2 Monotone Subsequenes with No RestritionsThe lassi de�nition of pattern avoidane for permutations is as follows.Let p = p1p2 � � � pn be a permutation, let k < n, and let q = q1q2 � � � qk beanother permutation. We say that p ontains q as a pattern if there existsa subsequene 1 � i1 < i2 < � � � < ik � n so that for all indies j and r, theinequality qj < qr holds if and only if the inequality pij < pir holds. If pdoes not ontain q, then we say that p avoids q. In other words, p ontainsq if p has a subsequene of entries, not neessarily in onseutive positions,whih relate to eah other the same way as the entries of q do.Example 1 The permutation 3174625 ontains the pattern 123. Indeed,onsider the �rst, fourth, and seventh entries.As in this paper, the monotone pattern 12 � � � k plays a speial role, weintrodue the speial notation �k = 12 � � � k: (1)In partiular, p ontains �k if and only if p ontains an inreasing sub-sequene of length k. The elements of this inreasing subsequene do nothave to be in onseutive positions.The enumeration of permutations avoiding a given pattern is a fasinat-ing subjet. Let Sn(q) denote the number of permutations of length n (or,in what follows, n-permutations) that avoid the pattern q.2.1 Patterns of Length ThreeAmong patterns of length three, there is no di�erene between the monotonepattern and other patterns as far as Sn(q) is onerned. This is the ontentof our �rst theorem.Theorem 1 Let q be any pattern of length three, and let n be any positiveinteger. Then Sn(q) = Cn = �2nn �=(n+ 1). In other words, Sn(q) is the nthCatalan number.Proof: If p avoids q, then the reverse of p avoids the reverse of q, and theomplement of p avoids the omplement of q. Therefore, Sn(123) = Sn(321)and Sn(132) = Sn(231) = Sn(213) = Sn(312).The fat that Sn(132) = Sn(123) is proved using the well-known Simion-Shmidt bijetion [26℄. In a permutation, let us all an entry a left-to-right2



minimum if it is smaller than every entry on its left. For instane, theleft-to-right minima of 4537612 are the entries 4, 3, and 1.Take an n-permutation p of length n that avoids 132, keep its left-to-right minima �xed, and arrange all other entries in dereasing order in thepositions that do not belong to left-to-right minima, to get the permutationf(p). For instane, if p = 34125, then f(p) = 35142. Then f(p) is a union oftwo dereasing sequenes, so it is 123-avoiding. Furthermore, f is a bijetionbetween the two relevant set of permutations. Indeed, if r is a permutationounted by Sn(123), then f�1(r) is obtained by keeping the left-to-rightminima of r �xed, and rearranging the remaining entries so that movingfrom left to right, eah slot is �lled by the smallest remaining entry that islarger than the losest left-to-right minimum on the left of that position.In order to prove that Sn(132) = Cn, just note that in a 132-avoidingn-permutation, any entry to the left of n must be smaller than any entryto the right of n. Therefore, if n is in the ith position, then there areSi�1(132)Sn�i(132) permutations of length n that avoid 132. Summing overall i, we get the reurreneSn(132) = n�1Xi=0 Si�1(132)Sn�i(132);whih is the well-known reurrene for Catalan numbers. 32.2 Patterns of Length FourWhen we move to longer patterns, the situation beomes muh more om-pliated and less well understood. In his dotoral thesis [30℄, Julian Westpublished the following numerial evidene.� for Sn(1342), and n = 1; 2; � � � ; 8, we have 1, 2, 6, 23, 103, 512, 2740,15485� for Sn(1234), and n = 1; 2; � � � ; 8, we have 1, 2, 6, 23, 103, 513, 2761,15767� for Sn(1324), and n = 1; 2; � � � ; 8, we have 1, 2, 6, 23, 103, 513, 2762,15793.These data are startling for at least two reasons. First, the numbersSn(q) are no longer independent of q; there are some patterns of length four3



that are easier to avoid than others. Seond, the monotone pattern 1234,speial as it is, does not provide the minimum or the maximum value forSn(q). We point out that for eah q of the other 21 patterns of length four,it is known that the sequene Sn(q) is idential to one of the three sequenesSn(1342), Sn(1234), and Sn(1324). See [7℄, Chapter 4, for more details.Exat formulas are known for two of the above three sequenes. For themonotone pattern, Ira Gessel gave a formula using symmetri funtions.Theorem 2 [16℄, [15℄ For all positive integers n, the identitySn(1234) = 2 � nXk=0�2kk ��nk�2 3k2 + 2k + 1� n� 2nk(k + 1)2(k + 2)(n� k + 1) (2)= 1(n+ 1)2(n+ 2) nXk=0�2kk ��n+ 1k + 1��n+ 2k + 1�: (3)The formula for Sn(1342) is due to the present author [5℄, and is quitesurprising.Theorem 3 For all positive integers n, we haveSn(1342) = (�1)n�1 � (7n2 � 3n� 2)2+ 3 nXi=2(�1)n�i � 2i+1 � (2i� 4)!i!(i � 2)! ��n� i+ 22 �:This result is unexpeted for two reasons. First, it shows that Sn(1342)is not simply less than Sn(1234) for every n � 6; it is muh less, in a sensethat we will explain in Subsetion 2.4. For now, we simply state that whileSn(1234) is \roughly" 9n, the value of Sn(1342) is\roughly" 8n. Seond, theformula is, in some sense, simpler than that for Sn(1234). Indeed, it fol-lows from Theorem 3 that the ordinary generating funtion of the sequeneSn(1342) isH(x) =Xi�0 F i(x) = 11� F (x) = 32x�8x2 + 20x+ 1� (1� 8x)3=2 :This is an algebrai power series. On the other hand, it is known (Prob-lem Plus 5.10 in [7℄ that the ordinary generating funtion of the sequeneSn(1234) is not algebrai. So permutations avoiding the monotone patternare not even the niest among permutations avoiding a given pattern, interms of the generating funtions that ount them.4



There is no known formula for the third sequene, that of the numbersSn(1324). However, the following inequality is known [6℄.Theorem 4 For all integers n � 7, the inequalitySn(1234) < Sn(1324)holds.Proof: Let us all an entry of a permutation a right-to-left maximum if it islarger than all entries on its right. Then let us say that two n-permutationsare in the same lass if they have the same left-to-right minima, and theyare in the same positions, and they have the same right-to-left maxima, andthey are in the same positions as well. For example, 51234 and 51324 are inthe same lass, but z = 24315 and v = 24135 are not, as the third entry ofz is not a left-to-right minimum, whereas that of v is.It is straightforward to see that eah non-empty lass ontains exatlyone 1234-avoiding permutation, the one in whih the subsequene of entriesthat are neither left-to-right minima nor right-to-left maxima is dereasing.It is less obvious that eah lass ontains at least one 1324-avoiding per-mutation. Note that if a permutation ontains a 1324-pattern, then we anhoose suh a pattern so that its �rst element is a left-to-right minimum andits last element is a right-to-left maximum. Take a 1324-avoiding permuta-tion, and take one of its 1324-patterns of the kind desribed in the previoussentene. Interhange its seond and third element. Observe that this willkeep the permutation within its original lass. Repeat this proedure aslong as possible. The proedure will stop after a �nite number of steps sineeah step dereases the number of inversions of the permutation. When theproedure stops, the permutation at hand avoids 1324.This shows that Sn(1234) � Sn(1324) for all n. If n � 7, then theequality annot hold sine there is at least one lass that ontains more thanone 1324-avoiding permutation. For n = 7, this is the lass 3�1�7�5, whihontains 3612745 and 3416725. For larger n, this lass an be prepended byn(n� 1) � � � 8 to get a suitable lass. 3It turns out again that Sn(1324) is muh larger than Sn(1234). We willgive the details in Subsetion 2.4.2.3 Patterns of Any LengthFor general k, there are some good estimates known for the value of Sn(�k).The �rst one an be proved by an elementary method.5



Theorem 5 For all positive integers n and k > 2, we haveSn(123 � � � k) � (k � 1)2n:Proof: Let us say that an entry x of a permutation is of rank i if it isthe end of an inreasing subsequene of length i, but there is no inreasingsubsequene of length i+ 1 that ends in x. Then for all i, elements of ranki must form a dereasing subsequene. Therefore, a q-avoiding permutationan be deomposed into the union of k�1 dereasing subsequenes. Clearly,there are at most (k� 1)n ways to partition our n entries into k� 1 bloks.Then we have to plae these bloks of entries somewhere in our permutation.There are at most (k � 1)n ways to assign eah position of the permutationto one of these bloks, ompleting the proof. 3Indeed, Theorem 5 has a stronger version, obtained by Amitaj Regev[23℄. It needs heavy analyti mahinery, and therefore will not be provedhere. We mention the result, however, as it shows that no matter whatk is, the onstant (k � 1)2 in Theorem 5 annot be replaed by a smallernumber, so the elementary estimate of Theorem 5 is optimal in some strongsense. We remind the reader that funtions f(n) and g(n) are said to beasymptotially equal if limn!1 f(n)g(n) = 1.Theorem 6 [23℄ For all n, Sn(1234 � � � k) asymptotially equals�k (k � 1)2nn(k2�2k)=2 :Here�k = 2k Z Zx1�x2� ����xk� � � Z [D(x1; x2; � � � ; xk) � e�(k=2)x2 ℄2dx1dx2 � � � dxk;where D(x1; x2; � � � ; xk) = �i<j(xi � xj), and k = (1=p2�)k�1 � kk2=2:2.4 Stanley-Wilf LimitsThe following elebrated result of Adam Marus and G�abor Tardos [21℄shows that in general, it is very diÆult to avoid any given pattern q.Theorem 7 [21℄ For all patterns q, there exists a onstant q so thatSn(q) � nq : (4)6



It is not diÆult [2℄ to show using Fekete's lemma that the sequene(Sn(q))1=n is monotone inreasing. The previous theorem shows that it isbounded from above, leading to the following.Corollary 1 For all patterns q, the limitL(q) = limn!1 (Sn(q))1=nexists.The real number L(q) is alled the Stanley-Wilf limit, or growth rate ofthe pattern q. In this terminology, Theorem 6 implies that L(�k) = (k�1)2.In partiular, L(1234) = 9, while Theorem 3 implies that L(1342) = 8. Soit is not simply easier to avoid 1234 than 1342, it is exponentially easier todo so.Numerial evidene suggests that in the multiset of k! real numbersSn(q), the numbers Sn(�k) are muh loser to the maximum than to theminimum. This led to the plausible onjeture that for any pattern q oflength k, the inequality L(q) � (k � 1)2 holds. This would mean that whilethere are patterns of length k that are easier to avoid than �k, there are nonethat are muh easier to avoid, in the sense of Stanley-Wilf limits. However,this onjeture has been disproved by the following result of Mihael Albertand al.Theorem 8 [1℄ The inequality L(1324) � 11:35 holds.In other words, it is not simply harder to avoid 1234 than 1324, it isexponentially harder to do so.2.5 Asymptoti NormalityIn this setion we hange diretion and prove that the distribution of thenumber of opies of �k in a randomly seleted n-permutation onverges indistribution to a normal distribution. (For the rest of this paper, whenwe say random permutation of length n, we always assume that eah n-permutation is seleted with probability 1=n!.) Note that in the speial aseof k = 2, this is equivalent to the lassi result that the distribution ofinversions in random permutations is asymptotially normal. See [14℄ andits referenes for various proofs of that result, or [11℄ for a generalization.We need to introdue some notation for transforms of the random vari-able Z. Let �Z = Z � E(Z), let ~Z = �Z=pVar(Z), and let Zn ! N(0; 1)mean that Zn onverges in distribution to the standard normal variable.7



Our main tool in this setion will be a theorem of Svante Janson [19℄.In order to be able to state that theorem, we need the following de�nition.De�nition 1 Let fYn;kjk = 1; 2; � � � ; Nng be an array of random variables.We say that a graph G is a dependeny graph for fYn;kjk = 1; 2 � � � ; Nng ifthe following two onditions are satis�ed:1. There exists a bijetion between the random variables Yn;k and theverties of G, and2. If V1 and V2 are two disjoint sets of verties of G so that no edge of Ghas one endpoint in V1 and another one in V2, then the orrespondingsets of random variables are independent.Note that the dependeny graph of a family of variables is not unique.Indeed if G is a dependeny graph for a family and G is not a ompletegraph, then we an get other dependeny graphs for the family by simplyadding new edges to G.Now we are in position to state Janson's theorem, the famous Jansondependeny riterion.Theorem 9 [19℄ Let Yn;k be an array of random variables suh that for alln, and for all k = 1; 2; � � � ; Nn, the inequality jYn;kj � An holds for somereal number An, and that the maximum degree of a dependeny graph offYn;kjk = 1; 2; � � � ; Nng is �n.Set Yn = PNnk=1 Yn;k and �2n = Var(Yn). If there is a natural number mso that Nn�m�1n �An�n �m ! 0; (5)as n goes to in�nity, then ~Yn ! N(0; 1):Let us order the �nk� subsequenes of length k of the permutation p1p2 � � � pnlinearly in some way. For 1 � i � �nk�, let Xn;i be the indiator random vari-able of the event that in a randomly seleted permutation of length n, theith subsequene of length k in the permutation p = p1p2 � � � pn is a 12 � � � k-pattern. We will now verify that the family of the Xn;i satis�es all onditionsof the Janson Dependeny Criterion.First, jXn;ij � 1 for all i and all n, sine the Xn;i are indiator randomvariables. So we an set An = 1. Seond, Nn = �nk�, the total numberof subsequenes of length k in p. Third, if a 6= b, then Xn;a and Xn;b are8



independent unless the orresponding subsequenes interset. For that, thebth subsequene must interset the ath subsequene in j entries, for some1 � j � k � 1. For a �xed ath subsequene, the number of ways that anhappen is Pk�1j=1 �kj��n�kk�j� = �nk�� �n�kk �� 1, where we used the well-knownVandermonde identity to ompute the sum. Therefore,�n � �nk���n� kk �� 1: (6)In partiular, note that (6) provides an upper bound for �n in terms of apolynomial funtion of n that is of degree k� 1 sine terms of degree k willanel.There remains the task of �nding a lower bound for �n that we anthen use in applying Theorem 9. Let Xn = P(nk)i=1Xn;i. We will show thefollowing.Proposition 1 There exists a positive onstant  so that for all n, the in-equality Var(Xn) � n2k�1holds.Proof: By linearity of expetation, we haveVar(Xn) = E(X2n)� (E(Xn))2 (7)= E0B�0B�(nk)Xi=1 Xn;i1CA21CA�0B�E0B� (nk)Xi=1 Xn;i1CA1CA2 (8)= E0B�0B�(nk)Xi=1 Xn;i1CA21CA�0B� (nk)Xi=1 E(Xn;i)1CA2 (9)= Xi1;i2E(Xn;i1Xn;i2)�Xi1;i2E(Xn;i1)E(Xn;i2): (10)Let I1 (resp. I2) denote the k-element subsequene of p indexed by i1,(resp. i2). Clearly, it suÆes to show thatXjI1\I2j�1E(Xn;i1Xn;i2)�Xi1;i2E(Xn;i1)E(Xn;i2) � n2k�1; (11)9



sine the left-hand side of (11) is obtained from the (10) by removing thesum of some positive terms, that is, the sum of all E(Xn;i1Xn;i2) wherejI1 \ I2j > 1.As E(Xn;i) = 1=k! for eah i, the sum with negative sign in (10) isXi1;i2E(Xn;i1)E(Xn;i2) = �nk�2 � 1k!2 ;whih is a polynomial funtion in n, of degree 2k and of leading oeÆient1k!4 . As far as the summands in (10) with a positive sign go, most of themare also equal to 1k!2 . More preisely, E(Xn;i1Xn;i2) = 1k!2 when I1 and I2are disjoint, and that happens for �nk��n�kk � ordered pairs (i1; i2) of indies.The sum of these summands isdn = �nk��n� kk � 1k!2 ; (12)whih is again a polynomial funtion in n, of degree 2k and with leadingoeÆient 1k!4 . So summands of degree 2k will anel out in (10). (We willsee in the next paragraph that the summands we have not yet onsideredadd up to a polynomial of degree 2k� 1.) In fat, onsidering the two typesof summands we studied in (10) and (12), we see that they add up to�nk��n� kk � 1k!2 ��nk�2 1k!2 = n2k�1 2�k2�� �2k�12 �k!4 +O(n2k�2) (13)= n2k�1�k2k!4 +O(n2k�2): (14)Next we look at ordered pairs of indies (i1; i2) so that the orrespondingsubsequenes I1 and I2 interset in exatly one entry, the entry x. Let ussay that ounting from the left, x is the ath entry in I1, and the bth entryin I2. See Figure 1 for an illustration.Observe thatXn;i1Xn;i2 = 1 if and only if all of the following independentevents our.(a) In the (2k�1)-element set of entries that belong to I1[I2, the entry xis the (a+b�1)th smallest. This happens with probability 1=(2k�1).(b) The a + b � 2 entries on the left of x in I1 [ I2 are all smaller thanthe 2k � a� b entries on the right of x in I1 [ I2. This happens withprobability 1( 2k�2a+b�2) . 10
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Figure 1: In this example, k = 11, a = 7, and b = 5.() The subsequenes of I1 on the left of x and on the right of x, and thesubsequenes of I2 on the left of x and on the right of x are all monotoneinreasing. This happens with probability 1(a�1)!(b�1)!(k�a)!(k�b)! .Therefore, if jI1 \ I2j = 1, thenP (Xi1Xi2 = 1) = 1(2k � 1)� 2k�2a+b�2�(a� 1)!(b� 1)!(k � a)!(k � b)! (15)= 1(2k � 1)! � �a+ b� 2a� 1 ��2k � a� bk � a �: (16)How many suh ordered pairs (I1; I2) are there? There are � n2k�1� hoiesfor the underlying set I1[I2. One that hoie is made, the a+b�1st smallestentry of I1 [ I2 will be x. Then the number of hoies for the set of entriesother than x that will be part of I1 is �a+b�2a�1 ��2k�a�bk�a �. Therefore, summingover all a and b and realling (15),pn = XjI1\I2j=1P (Xi1Xi2 = 1) = XjI1\I2j=1E(Xi1Xi2) (17)= 1(2k � 1)!� n2k � 1�Xa;b �a+ b� 2a� 1 �2�2k � a� bk � a �2: (18)The expression we just obtained is a polynomial of degree 2k � 1, in thevariable n. We laim that its leading oeÆient is larger than k2=k!4. If11



we an show that, the proposition will be proved sine (14) shows that thesummands not inluded in (17) ontribute about � k2k!4n2k�1 to the left-handside of (11).Reall that by the Cauhy-Shwarz inequality, if t1; t2; � � � ; tm are non-negative real numbers, then(Pmi=1 ti)2m � mXi=1 t2i ; (19)where equality holds if and only if all the ti are equal.Let us apply this inequality with the numbers �a+b�2a�1 �2�2k�a�bk�a �2 playingthe role of the ti, where a and b range from 1 to k. We get thatX1�a;b�k�a+ b� 2a� 1 �2�2k � a� bk � a �2 > �P1�a;b�k �a+b�2a�1 ��2k�a�bk�a ��2k2 : (20)We will use Vandermonde's identity to ompute the right-hand side. Tothat end, we �rst ompute the sum of summands with a �xed h = a+ b. WeobtainX1�a;b�k�a+ b� 2a� 1 ��2k � a� bk � a � = 2kXh=2 kXa=1�h� 2a� 1��2k � hk � a � (21)= 2kXh=2�2k � 2k � 1 � (22)= (2k � 1) ��2k � 2k � 1 �: (23)Substituting the last expression into the right-hand side of (20) yieldsX1�a;b�k�a+ b� 2a� 1 �2�2k � a� bk � a �2 > 1k2 � (2k � 1)2 � �2k � 2k � 1 �2: (24)Therefore, (17) and (24) imply thatpn > 1(2k � 1)!� n2k � 1�(2k � 1)2k2 �2k � 2k � 1 �2:As we pointed out after (17), pn is a polynomial of degree 2k � 1 in thevariable n. The last displayed inequality shows that its leading oeÆient islarger than 1(2k � 1)!2 � 1k2 � (2k � 2)!2(k � 1)!4 = k2k!412



as laimed.Comparing this with (14) ompletes the proof of our Proposition. 3We an now return to the appliation of Theorem 9 to our variables Xn;i.By Proposition 1, there is an absolute onstant C so that �n > Cnk�0:5 forall n. So (5) will be satis�ed if we show that there exists a positive integerm so that �nk�(dnk�1)m�1 � (n�k+0:5)m < dn�0:5m ! 0:Clearly, any positive integer m is a good hoie. So we have proved thefollowing theorem.Theorem 10 Let k be a �xed positive integer, and let Xn be the randomvariable ounting ourrenes of �k in permutations of length n. Then ~Xn !N(0; 1). In other words, Xn is asymptotially normal.3 Monotone Subsequenes with Entries in Con-seutive PositionsIn 2001, Sergi Elizalde and Mar Noy [12℄ onsidered similar problems usinganother de�nition of pattern ontainment. Let us say that the permutationp = p1p2 � � � pn tightly ontains the permutation q = q1q2 � � � qk if there existsan index 0 � i � n � k so that qj < qr if and only if pi+j < pi+r. (Wepoint out that this de�nition is a very speial ase of the one introdued byBabson and Steingr��msson in [3℄ and alled generalized pattern avoidane,but we will not need that muh more general onept in this paper.)Example 2 While permutation 246351 ontains 132 (take the seond, third,and �fth entries), it does not tightly ontain 132 sine there are no threeentries in onseutive positions in 246351 that would form a 132-pattern.If p does not tightly ontain q, then we say that p tightly avoids q.Let Tn(q) denote the number of n-permutations that tightly avoid q. Anintriguing onjeture of Elizalde and Noy [12℄ is the following.Conjeture 1 For any pattern q of length k and for any positive integer n,the inequality Tn(q) � Tn(�k)holds. 13



This is in stark ontrast with the situation for traditional patterns,where, as we have seen in the previous setion, the monotone pattern isnot the easiest or the hardest to avoid, even in the sense of growth rates.3.1 Tight Patterns of Length ThreeConjeture 1 is proved in [12℄ in the speial ase of k = 3. As it islear by taking reverses and omplements that Tn(123) = Tn(321) andthat Tn(132) = Tn(231) = Tn(213) = Tn(312), it suÆes to show thatTn(132) < Tn(123) if n � n. The authors ahieve that by a simple injetion.It turns out that the numbers Tn(123) are not simply larger than thenumbers Tn(132); they are larger even in the sense of logarithmi asymp-totis. The following results ontain the details.Theorem 11 [12℄ Let A123(x) = Pn�0 Tn(123)xnn! be the exponential gen-erating funtion of the sequene fTn(123)gn�0. ThenA123(x) = p32 � ex=2os�p32 x+ �6� :Furthermore, Tn(123) � 1 � (�1)n � n!;where �1 = 3p32� and 1 = e3p3�.Theorem 12 [12℄ Let A132(x) = Pn�0 Tn(132)xnn! be the exponential gen-erating funtion of the sequene fTn(132)gn�0. ThenA132(x) = 11� R x0 e�t2=2dt :Furthermore, Tn(132) � 2 � (�2)n � n!;where ��12 is the unique positive root of the equation R x0 e�t2=2dt = 1, and2 = e(�2)�2=2.3.2 Tight Patterns of Length FourFor tight patterns, the ase of length four is even more omplex than it isfor traditional patterns. Indeed, it is not true that eah of the 24 sequenesTn(q), where q is a tight pattern of length four, is idential to one of Tn(1342),14



Tn(1234), and Tn(1324). In fat, in [12℄, Elizalde and Noy showed that thereare exatly seven distint sequenes of this kind. They have also proved thefollowing results.Theorem 13 We have1. Tn(1342) � 1(�1)n � n!,2. Tn(1234) � 2(�2)n � n!, and3. Tn(1243) � 3(�3)n � n!,where ��11 is the smallest positive root z of the equation R z0 = e�t3=6dt = 1,��12 is the smallest positive root of os z � sin z + e�z = 0, and �3 is thesolution of a ertain equation involving Airy funtions.The approximate values of these onstants are� �1 = 0:954611, 1 = 1:8305194,� �2 = 0:963005, 2 = 2:2558142,� �3 = 0:952891, 3 = 1:6043282.These results are interesting for several reasons. First, we see that again,Tn(�4) is larger than the other Tn(q), even in the asymptoti sense. Seond,Tn(1234) 6= Tn(1243), in ontrast to the traditional ase, where Sn(1234) =Sn(1243). Third, the tight pattern 1342 is not the hardest to avoid, unlikein the traditional ase, where Sn(1342) � Sn(q) for any pattern q of lengthfour.3.3 Longer Tight PatternsFor tight patterns that are longer than four, the only known results onernmonotone patterns. They have been found by Rihard Warlimont, and,independently, also by Sergi Elizalde and Mar Noy.Theorem 14 [12℄, [28℄, [29℄ For all integers k � 3, the identityXn�0 Tn(�k)xnn! = 0�Xi�0 xik(ik)! �Xi�0 xik+1(ik + 1)!1A�1holds. 15



Theorem 15 [29℄ Let k � 3, let fk(x) =Pi�0 xik(ik)! �Pi�0 xik+1(ik+1)! , and let!k denote the smallest positive root of fk(x). Then!k = 1 + 1m! (1 +O(1)) ;and Tn(�k)n! � m!�nk :3.4 Growth RatesThe form of the results in Theorems 11 and 12 is not an aident. They arespeial ases of the following general theorem.Theorem 16 [13℄ For all patterns q, there exists a onstant wq so thatlimn!1�Tn(q)n! �1=n = wq:Compare this with the result of Corollary 1. That Corollary and thefat that the sequene (Sn(q)1=n is inreasing, show that the numbers Sn(q)are roughly as large as L(q)n, for some onstant L(q). Clearly, it is muheasier to avoid a tight pattern than a traditional pattern. However, Theorem16 shows how muh easier it is. Indeed, this time it is not the number ofpattern avoiding permutations is simply exponential; it is their ratio to allpermutations that is exponential.The fat that Tn(q)=n! < Cnq for some Cq is straightforward. Indeed,Tn(q)=n! < �k!�1k! �bn=k by simply looking at bn=k distint subsequenes ofk onseutive entries. Interestingly, Theorem 16 shows that this straightfor-ward estimate is optimal in some (weak) sense. Note that there is no knownway to get a result similarly lose to the truth for traditional patterns.3.5 Asymptoti NormalityOur goal now is to prove that the distribution of tight opies of �k is asymp-totially normal in randomly seleted permutations of length n. Note thatin the speial ase of k = 2, our problem is redued to the lassi resultstating that desents of permutations are asymptotially normal. (Just asin the previous setion, see [14℄ and its referenes for various proofs of thisfat, or [11℄ for a generalization.) Our method is very similar to the onewe used in Subsetion 2.5. For �xed n and 1 � i � n � k + 1, let Yn;i16



denote the indiator random variable of the event that in p = p1p2 � � � pn,the subsequene pipi+1 � � � pi+k�1 is inreasing. Set Yn = Pn�k+1i=1 Yn;i. Wewant to use Theorem 9. Clearly, jYn;ij � 1 for every i, and Nn = n� k + 1.Furthermore, the graph with vertex set f1; 2; � � � ; n� k+ 1g in whih thereis an edge between i and j if and only if ji � jj � k � 1 is a dependenygraph for the family fYn;ij1 � i � n� k + 1g. In this graph, �n = 2k � 2.We will prove the following estimate for Var(Y ).Proposition 2 There exists a positive onstant C so that Var(Y ) � n forall n.Proof: By linearity of expetation, we haveVar(Yn) = E(Y 2n )� (E(Yn))2 (25)= E0� n�k+1Xi=1 Yn;i!21A� E n�k+1Xi=1 Yn;i!!2 (26)= E0� n�k+1Xi=1 Yn;i!21A� n�k+1Xi=1 E(Yn;i)!2 (27)= Xi1;i2E(Yn;i1Yn;i2)�Xi1;i2E(Yn;i1)E(Yn;i2): (28)In (28), all the (n� k+1)2 summands with a negative sign are equal to1=k!2. Among the summands with a positive sign, the (n�2k+1)(n�2k+2)summands in whih ji1� i2j � k are equal to 1=k!2, the n�k+1 summandsin whih i1 = i2 are equal to 1=k!, and the 2(n � 2k + 2) summands inwhih ji1 � i2j = k� 1 are equal to 1=(k+1)!. All remaining summands arenon-negative. This shows thatVar(Yn) � n(1� 2k) + 3k2 � 2k + 1k!2 + n� k + 1k! + 2(n� k + 2)(k + 1)!� � 1k! + 2(k + 1)! � 2k � 1k!2 �n+ dk;where dk is a onstant that depends only on k. As the oeÆient 1k!+ 2(k+1)!�2k�1k!2 of n in the last expression is positive for all k � 2, our laim is proved.3 The main theorem of this subsetion is now immediate.17



Theorem 17 Let Yn denote the random variable ounting tight opies of�k in a randomly seleted permutation of length n. Then ~Yn ! N(0; 1).Proof: Use Theorem 9 withm = 3, and let C be the onstant of Proposition2. Then (5) simpli�es to(n� k + 1) � (2k � 2)2 � C3n1:5 ;whih onverges to 0 as n goes to in�nity. 34 Conseutive Entries in Conseutive PositionsLet us take the idea of Elizalde and Noy one step further, by restriting thenotion of pattern ontainment further as follows. Let p = p1p2 � � � pn be apermutation, let k < n, and let q = q1q2 � � � qk be another permutation. Wesay that p very tightly ontains q if there is an index 0 � i � n� k and aninteger 0 � a � n� k so that qj < qr if and only if pi+j < pi+r, and,fpi+1; pi+2; � � � ; pi+kg = fa+ 1; a+ 2; � � � ; a+ kg:That is, p very tightly ontains q if p tightly ontains q and the entries ofp that form a opy of q are not just in onseutive positions, but they arealso onseutive as integers (in the sense that their set is an interval). Wepoint out that this de�nition was used by A. Myers [22℄ who alled it rigidpattern avoidane. However, in order to keep ontinuity with our previousde�nitions, we will refer to it as very tight pattern avoidane.For example, 15324 tightly ontains 132 (onsider the �rst three entries),but does not very tightly ontain 132. On the other hand, 15324 very tightlyontains 213, as an be seen by onsidering the last three entries. If p doesnot very tightly ontain q, then we will say that p very tightly avoids q.4.1 Enumerative ResultsLet Vn(q) be the number of permutations of length n that very tightly avoidthe pattern q. The following early results on Vn(�k) are due to David Jaksonand others. They generalize earlier work by Riordan [24℄ onerning thespeial ase of k = 3. 18



Theorem 18 [18℄, [17℄ For all positive integers n, and any k � n, the valueof Vn(�k) is equal to the oeÆient of xn in the formal power seriesXm�0m!xm�1� xk�11� xk �m :Note that in partiular, this implies that for k � n < 2k, the number ofpermutations of length k+r ontaining a very tight opy of �k is r!(r2+r+1).4.2 An Extremal Property of the Monotone PatternReall that we have seen in Setion 2 that in the multiset of the k! numbersSn(q) where q is of length k, the number Sn(�k) is neither minimal normaximal. Also reall that in Setion 3 we mentioned that in the multisetof the k! numbers Tn(q), where q is of length k, the number Tn(�k) isonjetured to be maximal. While we annot prove that we prove that inthe multiset of the k! numbers Vn(q), where q is of length k, the numberVn(�k) is maximal, in this Subsetion we prove that for almost all very tightpatterns q of length k, the inequality Vn(q) � Vn(�k) does hold.4.2.1 An Argument Using ExpetationsLet q be any pattern of length k. For a �xed positive integer n, let Xn;qbe the random variable ounting the very tight opies of q in a randomlyseleted n-permutation. It is straightforward to see that by linearity ofexpetation, E(Xn;q) = (n� k + 1)2�nk�k! : (29)In partiular, E(Xn;q) does not depend on q, just on the length k of q.Let pn;i;q be the probability that a randomly seleted n-permutationontains exatly i very tight opies of q, and let P (n; i; q) be the probabilitythat a randomly seleted n-permutation ontains at least i very tight opiesof q. Note that Vn(q) = (1� P (n; 1; q))n!, for any given pattern q.
19



Now note that by the de�nition of expetationE(Xn; q) = mXi=1 ipn;i;q= m�1Xj=0 jXi=0 pn;m�i;q= pn;m;q + (pn;m;q + pn;m�1;q) + � � �+ (pn;m;q + � � � + pn;1;q)= mXi=1 P (n; i; q):We know from (29) that E(Xn;q) = E(Xn;�k), and then the previous dis-played equation implies thatmXi=1 P (n; i; q) = mXi=1 P (n; i; �): (30)So if we an show that for i � 2, the inequalityP (n; i; q) � P (n; i; �k) (31)holds, then (30) will imply that P (n; 1; q) � P (n; 1; �k), whih is equivalentto Vn(q) � Vn(�k), whih we set out to prove.4.2.2 Extendible and Non-extendible PatternsNow we are going to desribe the set of patterns q for whih we will provethat Vn(q) � Vn(�k).Let us assume that the permutation p = p1p2 � � � pn very tightly on-tains two non-disjoint opies of the pattern q = q1q2 � � � qk. Let thesetwo opies be q(1) and q(2), so that q(1) = pi+1pi+2 � � � pi+k and q(2) =pi+j+1pi+j+2 � � � pi+j+k for some j 2 [1; k�1℄. Then jq(1)\q(2)j = k�j+1 =:s. Furthermore, sine the set of entries of q(1) is an interval, and the set ofentries of q(2) is an interval, it follows that the set of entries of q(1) \ q(2) isalso an interval. So the rightmost s entries of q, and the leftmost s entriesof q must form idential patterns, and the respetive sets of these entriesmust both be intervals.If q0 is the reverse of the pattern q, then learly Vn(q) = Vn(q0). There-fore, we an assume without loss of generality that that the �rst entry ofq is less than the last entry of q. For shortness, we will all suh patternsrising patterns. 20



We laim that if p very tightly ontains two non-disjoint opies q(1) andq(2) of the rising pattern q, and s is de�ned as above, then the rightmosts entries of q must also be the largest s entries of q. This an be seen byonsidering q(1). Indeed, the set of these entries of q(1) is the intersetion oftwo intervals of the same length, and therefore, must be an ending segmentof the interval that starts on the left of the other. An analogous argument,applied for q(2), shows that the leftmost s entries of q must also be thesmallest s entries of q. So we have proved the following.Proposition 3 Let p be a permutation that very tightly ontains opies q(1)and q(2) of the pattern q = q1q2 � � � qk. Let us assume without loss of general-ity that q is rising. Then q(1) and q(2) are disjoint unless all of the followinghold.There exists a positive integer s � k � 1 so that1. the rightmost s entries of q are also the largest s entries of q, and theleftmost s entries of q are also the smallest s entries of q, and2. the pattern of the leftmost s entries of q is idential to the pattern ofthe rightmost s entries of q.If q satis�es both of these riteria, then two very tightly ontained opiesof q in p may indeed interset. For example, the pattern q = 2143 satis�esboth of the above riteria with s = 2, and indeed, 214365 very tightlyontains two interseting opies of q, namely 2143 and 4365.The following de�nition is similar to one in [22℄.De�nition 2 Let q = q1q2 � � � qk be a rising pattern that satis�es both on-ditions of Proposition 3. Then we say that q is extendible.If q is rising and not extendible, then we say that q is non-extendible.Note that the notions of extendible and non-extendible patterns are onlyde�ned for rising patterns here.Example 3 The extendible patterns of length four are as follows:� 1234, 1324 (here s = 1),� 2143 (here s = 2).Now we are in a position to prove the main result of this Subsetion.21



Theorem 19 Let q be any pattern of length k so that either q or its reverseq0 is non-extendible. Then for all positive integers n,Vn(q) � Vn(�k):Proof: We have seen in Subsubsetion 4.2.1 that it suÆes to prove (31).On the one hand, (n� k � i+ 2)!n! � P (n; i; �k); (32)sine the number of n-permutations very tightly ontaining i opies of � isat least as large as the number of n-permutations very tightly ontainingthe pattern 12 � � � (i+k� 1). The latter is at least as large as the number ofn-permutations that very tightly ontain a 12 � � � (i+ k� 1)-pattern in their�rst i+ k � 1 positions.On the other hand,P (n; i; q) � �n� i(k � 1)i �2(n� ik)! 1n! : (33)This an be proved by noting that if S is the i-element set of starting po-sitions of i (neessarily disjoint) very tight opies of q in an n-permutation,and AS is the event that in a random permutation p = p1 � � � pn, the sub-sequene pjpj+1 � � � pj+k�1 is a very tight q-subsequene for all j 2 S, thenP (AS) = �n�i(k�1)i �(n� ik)! 1n! . The details an be found in [10℄.Comparing (32) and (33), the laim of the theorem follows. Again, thereader is invited to onsult [10℄ for details. 3It is not diÆult to show [10℄ that the ratio of extendible permutationsof length k among all permutations of length k onverges to 0 as k goes toin�nity. So Theorem 19 overs almost all patterns of length k.4.3 The Limiting Distribution of the Number of Very TightCopiesIn the previous two setions, we have seen that the limiting distribution ofthe number of opies of �k, as well as the limiting distribution of the numberof tight opies of �k, is normal. Very tight opies behave di�erently. We willdisuss the speial ase of k = 2, that is, the ase of the very tight pattern12. 22



Theorem 20 Let Zn be the random variable that ounts very tight opiesof 12 in a randomly seleted permutation of length n. Then Zn onverges aPoisson distribution with parameter � = 1.A version of this result was proved, in a slightly di�erent setup, by Wol-fowitz in [31℄ and by Kaplansky in [20℄. They used the method of moments,whih is the following.Lemma 1 [25℄ Let U be a random variable so that1. for every positive integer k, the moment E(Uk) exists, and2. the variable U is ompletely determined by its moments, that is, thereis no other variable with the same sequene of moments.Let U1; U2; � � � be a sequene of random variables, and let us assume that forall positive integers k, limn!1Ukn = Uk:Then Un ! U in distribution.Proof: (of Theorem 20.) It is well-known [27℄ that the Poisson distribu-tion (with any parameter) is determined by its moments, so the methodof moments an be applied to prove onvergene to a Poisson distribution.Let Zn;i be the indiator random variable of the event that in a randomlyseleted n-permutation p = p1p2 � � � pn, the inequality pi + 1 = pi+1. ThenE(Zn;i) = 1=n, and the probability that p has a very tight opy of �k fork > 2 is O(1=n). Therefore, we havelimn!1E(Zjn) = limn!1E0� n�1Xi=1 Zn;i!j1A = limn!1E0� n�1Xi=1 Vn;i!j1A ; (34)where the Vn;i are independent random variables and eah of them takesvalue 0 with probability (n� 1)=n, and value 1 with probability 1=n. (See[31℄ for more details.) The rightmost limit in the above displayed equationis not diÆult to ompute. Let t be a �xed non-negative integer. Then theprobability that exatly t variables Vn;i take value 1 is �n�1t �n�t(n�1n )n�t �e�1t! . One we know the t-element set of the Vn;i that take value 1, eahof the tj strings of length j formed from those t variables ontributes 1 toE(V j). Summing over all t, this proves thatlimn!1E0� n�1Xi=1 Vn;i!j1A = e�1Xt�0 tjj! :23



On the other hand, it is well-known that e�1Pt�1 tjj! , the jth Bell number,is also the jth moment of the Poisson distribution with parameter 1. Com-paring this to (34), we see that the sequene E(Zjn) onverges to the jthmoment of the Poisson distribution with parameter 1. Therefore, by themethod of moments, our laim is proved. 35 Added In ProofWhile this is a survey on monotone patterns, it is worth pointing out thatTheorem 10, and its proof, survive even if we replae �k by an arbitrary pat-tern. Most of the proof arries through without modi�ation. All that hasto be hanged are the independent events (b) and () onsidered followingequation (14).Reall that we are in the speial ase when I1 and I2 both form q-patterns, and I1\ I2 = x is the ath smallest entry in I1 and the bth smallestentry in I2. Given q, the pair (a; b) desribes the loation of x in I1 and inI2 as well. Let I 01 (resp. I 02) denote the set of a � 1 positions in I1 (resp.b � 1 positions in I2) whih must ontain entries smaller than x given thatI1 (resp. I2) forms a q-pattern. Similarly, let I 001 (resp. I 002 ) denote the set ofk � a positions in I1 (resp. k � b positions I2) whih must ontain entrieslarger than x given that I1 (resp. I2) forms a q-pattern.Now leave ondition (a) unhanged, and hange onditions (b) and ()as follows.(b') The a + b � 2 entries in positions belonging to I 01 [ I 02 must all besmaller than the 2k � a � b entries in positions belonging to I 001 [ I 002 .This happens with probability 1( 2k�2a+b�2) .(') � the subsequene I 01 is a pattern that is isomorphi to the patternformed by the a� 1 smallest entries of q,� the subsequene I 02 is a pattern that is isomorphi to the patternformed by the b� 1 smallest entries of q,� the subsequene I 001 is a pattern that is isomorphi to the patternformed by the k � a largest entries of q, and� the subsequene I 002 is a pattern that is isomorphi to the patternformed by the k � b largest entries of q.This happens with probability 1(a�1)!(b�1)!(k�a)!(k�b)! .24
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