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Abstract. We show a way to compute, to a high level of precision, the
probability that a randomly selected permutation of length n is non-
overlapping. As a byproduct, we find some combinatorial identities that
are routine to prove using generating functions, but difficult to prove
bijectively.

To Doron Zeilberger, for his Sixtieth Birthday

1. Introduction

Let us say that the permutation p = p1p2 · · · pn tightly contains the per-
mutation q = q1q2 · · · qk if there exists an index 0 ≤ i ≤ n − k so that
pi+j < pi+r if and only if qi < qj . In other words, p tightly contains q if
there is a string of k entries in p in consecutive positions which relate to each
other as the entries of q do.

If p does not tightly contain q, then we say that p tightly avoids q. Let
Tn(q) denote the number of n-permutations that tightly avoid q. For in-
stance, 1436725 tightly contains 123 (consider the third, fourth, and fifth en-
tries), but tightly avoids 321 and 4231. An intriguing conjecture of Elizalde
and Noy [2] from 2001 is the following.

Conjecture 1. Let q be any pattern of length k. Then Tn(q) ≤ Tn(12 · · · k),
and equality holds only if q = 12 · · · k or q = k(k − 1) · · · 1.

A permutation q = q1q2 · · · qk is called non-overlapping if there is no
permutation p = p1p2 · · · pn so that both p1p2 · · · pk and pn−k+1pn−k+2 · · · pn
form a q-pattern, and k satisfies k < n < 2k − 1. For instance, q = 132
is non-overlapping, but q′ = 2143 is not since p = 214365 has the property
that both its first four entries and its last four entries form a 2143-pattern.
In other words, a permutation is called non-overlapping if it is impossible
for two of its copies to overlap in more than one entry. Equivalently, q is
non-overlapping if there is no j so that 2 ≤ j ≤ k− 1 and the pattern of the
first j entries of q is identical to the pattern of the last j entries of q.

Non-overlapping patterns have recently been the subject of vigorous re-
search. See [1] for an overview of these results. In particular, both numerical
evidence and intuition suggests that non-overlapping patterns should be the
ones for which Conjecture 1 is the easiest to prove. Indeed, the total number
of tight copies of a pattern q of length k in all n! permutations of length n
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is
(

n

k

)2

(n− k)! = n!
n!

k!
.

Crucially, this number does not depend on q. In other words, no matter
what q is (as long as its length is k), the set of all n! permutations of length
n must contain the same total number of tight copies of q. If q is non-
overlapping, then it should be difficult to pack many tight copies of q into
one permutation, so there should be many permutations that contain some

tight copies of q, and hence, there should be not so many permutations that
tightly avoid q. So Tn(q) should be small for non-overlapping patterns.

This motivates the enumeration of non-overlapping patterns. If we can
prove Conjecture 1 for such patterns, for how large a portion of all patterns
will the conjeture be proved?

2. A basic lower bound

Even a rather crude argument shows that a reasonably high portion of all
permutations is non-overlapping. Indeed, if p is overlapping, then for some
i ≥ 2, the pattern of the first i entries and the pattern of the last i entries
is identical. Let Fi be the event that this happens. Clearly P (Fi) = 1

i! ,

since there are i! favorable outcomes and i!2 possible outcomes as far as the
pattern of the first i entries and the pattern of the last i entries is concerned.

Let n be an even positive integer. Then the probability that a randomly
selected permutation p of length n is overlapping is

P





n/2
⋃

i≥2

Fi



 ≤
∑

i≥2

P (Fi) =
∑

i≥2

1

i!
= e− 2 ≈ 0.718.

So the probability that p is non-overlapping is at least 1− (e− 2) = 3− e ≈
0.282.

3. Monotonicity

For n ≥ 2, let an be the probability that a randomly selected n-permutation
is non-overlapping. The simple argument of the previous section shows that
an ≥ 3− e for all n. In this section we prove that the sequence a2, a3, · · · of
positive real numbers is strictly monotone decreasing, hence it has a limit.

It is routine to verify that a2 = 1, a3 = 2/3, a4 = 1/2, a5 = 2/5, and
a6 = 7/18. Furthermore, for even values of n, the following simple recurrence
relation holds.

Lemma 1. Let n be an even positive integer. Then we have

(1) an = 1−
n/2
∑

j=2

aj
j!
.
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Proof. If p is overlapping, then there is a unique smallest index j so that
2 ≤ j ≤ n/2 and the pattern q of the first j entries of p agrees with the
pattern q′ of the last j entries of p. Note that because of the minimality of
j, the pattern q, and hence the pattern q′ are non-overlapping. Indeed, if
for some i ∈ [2, j−1], the pattern r of the first i entries of q agreed with the
pattern of the last q entries of q (and hence, of q′), then the patterns of the
first and last i entries of p would both be r, contradicting the minimality of
j.

Moreover, the minimal index j discussed in the last paragraph cannot
be more than n/2, since then q and q′ would intersect in h ≥ 2 entries,
meaning that the patterns of the first h and last h entries of q were identical,
contradicting the minimality of j.

For a fixed index j, the probability that the pattern q of the first j entries
of a a random permutation p of length n is the same non-overlapping pattern

as the pattern q′ of the last j entries of p is
ajj!
j!2

=
aj
j! . Indeed, there are j!

possible outcomes for each of q and q′, and ajj! of them are favorable. �

Recalling that the values of am are easy to obtain by hand for m ≤ 6,
Formula (1) allows us to compute the values of an if n ≤ 12 is an even
number. We get a8 =

53
144 , a10 =

1313
3600 , and a12 =

23599
64800 .

For odd values of n, the situation is more complicated since there are
permutations of length n = 2k+1 that are overlapping because the pattern
of their first k + 1 entries and the pattern of their last k + 1 entries are
identical, while the pattern of their first j entries and last j entries is not
identical for any j satisfying 1 < j < k + 1. Let us call such permutations
barely overlapping. An example is the permutation p = 13254. The first
three and the last three entries of this permutation both form a 132-pattern,
but the first two form a 12-pattern, and the last two form a 21-pattern.

For odd n, let bn be the probability that a randomly selected permutation
of length n is barely overlapping. It is easy to verify that b3 = 1/3, and
b5 = 1/10. We then have the following recurrence relation.

Corollary 1. Let n > 1 be an odd integer. Then we have

(2) an = 1− bn −
n/2
∑

j=2

aj
j!

= an−1 − bn.

With a little work, one can compute by hand that b7 = 88/7! = 11/630,
so (2) yields

a7 = a6 − b7 =
7

18
− 11

630
=

13

35
.

This allows the computation of the exact values of a14 and a16.
Comparing Lemma 1 and Corollary 1, it is obvious that a2k+1 ≤ a2k, and

in fact it is straightforward to prove that the inequality is strict, since bn > 0
for n ≥ 3.
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However, it is not obvious that a2k−1 ≤ a2k also holds for all k. It follows
Lemma 1 and Corollary 1 that this inequality is equivalent to

(3) b2k−1 ≤
ak
k!

.

Inequality (3) is not obvious since neither the numbers an nor the numbers
bn are easy to determine. In fact, even if we disregard the requirements
related to the non-overlapping property, the equality corresponding to (3) is
not a trivial one. The question then becomes the following. What is more
likely, that the patterns of the first k and last k entries of a permutation
of length 2k are identical, or that the patterns of the first k and last k
entries of a permutation of length 2k − 1 are identical? The former clearly
has probability 1/k!, but the probability of the latter takes some work to
obtain. This is the content of the next lemma.

Lemma 2. Let dk be the number of permutations of length 2k− 1 in which

the pattern of the first k entries is identical to the pattern of the last k
entries. Then for k ≥ 2, we have

dk = (k − 2)! ·
(

(2k − 1)

(

2k − 2

k − 1

)

− 4k−1

)

.

Proof. Let p be a permutation counted by dk. Let the first k entries of p
be called front entries, and let the last k entries of p be called back entries.
The kth entry of p, which is both a front and back entry, is also called the
middle entry.

Clearly, if we know the set of front entries of p, and the middle entry m of
p, then we also know the set of back entries of p, and we then have (k − 2)!
possible candidates for p itself. Indeed, if m is the ith smallest front entry,
then the rightmost entry of p is the mth smallest back entry. Similarly, if m
is the ith smallest back entry, then the leftmost entry of p is the ith smallest
front entry. There are (k − 2)! ways to permute the remaining k − 2 front
entries, and then the pattern of the k− 2 remaining back entries is uniquely
determined.

Therefore, the claim of the Lemma will be proved if we can show that
there are (2k − 1)

(2k−2
k−1

)

− 4k−1 ways to select the set of F front entries of
p and the middle element m of p. There are clearly 2k − 1 ways to select
an entry from the set [2k − 1] = {1, 2, · · · , 2k − 1} for the role of m, and

then there are
(2k−2
k−1

)

ways to select the remaining 2k− 2 front entries. This

leads to (2k−1)
(2k−2
k−1

)

choices for the ordered pair (m,F ), but some of these
choices are invalid, that is, they will never occur as the middle entry and
the set of front entries for a permutation p counted by dk.

Indeed, note the following. Given m and F , the relative rank of m in F
determines the relative rank of m among the back entries as well. Let us
say that m is the ith smallest front entry and the jth smallest back entry.
We have explained two paragraphs earlier how this determines the leftmost
and rightmost entries of p. However, that argument breaks down if i = j.
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Indeed, that would mean that the pattern q of the front entries (equivalently,
back entries) of p would both start and end with its ith smallest entry, which
is obviously impossible.

Observe that if m is an even number, then there are an odd number
of entries of p that are less than m, so m cannot simultaneously be the
ith smallest front entry and the ith smallest back entry. So if m is even,
then no pair (m,F ) is invalid. However, when m = 2i + 1, then there are
(2i
i

)(2(k−1−i)
k−1−i

)

invalid choices for F . Indeed, there are
(2i
i

)

ways to split the
set of entries less than m evenly between the front and the back of p, and

then there are
(2(k−1−i)

k−1−i

)

ways to split the set of entries larger than m evenly

between the front and back of p. The pairs (m,F ) obtained this way are
precisely the invalid pairs.

Summing over i = 0, 1, · · · , k− 1, we get that the total number of choices
for the ordered pair (m,F ) that result in an invalid pair is

(4)
∑

0≤i≤k−1

(

2i

i

)(

2(k − 1− i)

k − 1− i

)

= 4k−1.

Note that the fact that the left-hand side of (4) is equal to the closed
expression of the right-hand side is not easy to prove combinatorially. On
the other hand, a proof using generating functions is immediate, since both
sides are the equal to the coefficient of xk−1 in

1√
1− 4x

· 1√
1− 4x

=
1

1− 4x
.

The interested reader should consult Exercise 2.c. of [4], where the history
of the combinatorial proofs of (4) is explained. �

As an example, the formula of Lemma 2 says that d3 = 1 · (3 · 2− 4) = 2,
and indeed, there are two permutations of length three in which the pattern
of the first two entries is the same as the pattern of the last two entries,
namely 123 and 321.

Lemma 3. For all k ≥ 2, the inequality

b2k−1 <
ak
k!

holds.

Proof. It follows directly from the definitions that b2k−1 ≤ dk
(2k−1)! , since the

set enumerated by (2k− 1)!b2k−1 is a subset of the set enumerated by dk as
the latter has no non-overlapping requirements.

Therefore, it suffices to show that dk
(2k−1)! <

ak
k! . For k = 2, we have dk = 2

and a2 = 1, so the inequality holds.
If k ≥ 3, then note that Lemma 2 provides an exact formula for dk, and

the basic lower bound proved in Section 2 implies that ak > 1/4. Therefore,
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it suffices to show that

(k − 2)!

(2k − 1)!
·
(

(2k − 1)

(

2k − 2

k − 1

)

− 4k−1

)

<
1

4
,

or, equivalently,

1

(k − 1)!(k − 1)
− 4k−1 · (k − 2)!

(2k − 1)!
<

1

4
.

The last displayed inequality is clearly true if k ≥ 3, since in that case the
first term of the left-hand side is at most 1/4. �

It is clear that b2k−1 > 0 for k ≥ 2. Therefore, Lemma 1, Corollary 1,
and Lemma 3 together immediately imply the main result of this section.

Theorem 1. The sequence a2, a3, · · · is strictly monotone decreasing.

4. Bounds

Theorem 1 shows that the sequence a2, a3, · · · is strictly monotone de-
creasing. As it is a sequence of positive real numbers, it follows that it has
a limit L. We did not succeed in giving an explicit and exact formula for
this L. However, even simple methods result in a good approximation of L.

First, as the sequence of the ai is strictly monotone decreasing, L < an
for all n ≥ 2. In particular, setting n = 2j, this and Lemma 1 imply that

L < a2j = 1−
j

∑

i=2

ai
i!
.

For instance, setting j = 8, we get that

L < 1− 1

2
− 2

18
− 1

48
− 2

600
− 7

12960
− 13

35 · 7! −
53

144 · 8! = 0.3640992743.

On the other hand, note that

L = lim
m→∞

a2m

= 1− lim
m→∞

m
∑

j=2

aj
j!

= 1−
∞
∑

j=2

aj
j!

The infinite sum of the last line can be bounded from above by replacing
aj by av for all j > v. of j. In the practice, this means that we leave aj
unchanged for all values of j for which aj is known, and change it to av for
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all other values. As the infinite sum occurs with a negative sign, this yields
the lower bound

(5) L > 1−
v

∑

j=2

aj
j!

− av
∑

j≥v+1

1

j!
= a2v − av



e−
v

∑

j=0

1

j!



 .

It goes without saying that the larger v is, the more precise the lower bound
of (5) is. For instance, for v = 8, formula (5) yields

L > a16 − a8 ·



e−
8

∑

j=0

1

i!



 = 0.364098149.

So even our very simple methods of estimation determine the first five digits
after the decimal point in L. This level of precision is enough to verify that
L is not in the very extensive database of mathematical constants given in
[3].

5. An interesting fact about the numbers dk/(k − 2)!

As we have seen in the proof of Lemma 2, the numbers dk/(k− 2)! count
ordered pairs (m,F ), where m ∈ {1, 2, · · · , 2k − 1} = [2k − 1], while F is a
k-element subset of [2k − 1] so that F contains m, and the relative rank of
m in F is not equal to the relative rank of m in ([2k − 1] \ F ) ∪ {m}.

Starting with k = 2, the first few numbers hk = dk/(k − 2)! are, 2, 14,
76, 374. This is sequence A172060 of the On-Line Encyclopedia of Integer
Sequences [5] (shifted by one). The interpretation given to this sequence
in [5] is equivalent to the following. Let gk be the number of ordered pairs
(b, p), where p is a lattice path starting at (0, 0) and using 2(k − 1) steps,
each of which is (1,−1) or (1, 1), while b is an intersection point of p and
the horizontal axis that is different from the origin.

It is straightforward to prove that g2 = 2, and gk = 4gk−1 +
(2k−2
k−1

)

.
Solving this recurrence relation using ordinary generating functions, we get
that indeed, gk = (2k − 1) ·

(

2k−2
k−1

)

− 4k−1 = hk as claimed.
This raises the question whether we can prove the identity gk = hk com-

binatorially. This is equivalent to asking for a direct bijective proof for the
formula gk = (2k − 1) ·

(

2k−2
k−1

)

− 4k−1. That, in turn, is equivalent to the
following question.

Question 1. Is there a simple bijective proof for the identity

(6)

n
∑

i=0

(

2i

i

)

4n−i = (2n+ 1)

(

2n

n

)

?

There are several easy ways to interpret identity (6) combinatorially, us-
ing, for instance, lattice paths. In terms of generating functions, the left-
hand side is the coefficient of xn in the power series 1√

1−4x
· 1
1−4x , while the
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right-hand side is the coefficient of xn in the obviously identical power series
(1− 4x)−3/2, as computed by the Binomial theorem.

If we rewrite the factor 4n−i using formula (4), we are led to the following
intriguing question.

Question 2. Is there a simple bijective proof for the identity

∑

i+j+k=n

(

2i

i

)(

2j

j

)(

2k

k

)

= (2n + 1)

(

2n

n

)

?

The sum is taken over all ordered triples (i, j, k) of non-negative integers

satisfying i+ j + k = n.

We hope to answer Questions 1, 2, and perhaps some of their generaliza-
tions, in a subsequent paper.
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