
Generalized Desents and NormalityMikl�os B�onaDepartment of MathematisUniversity of FloridaGainesville FL 32611-8105January 29, 2008AbstratWe use Janson's dependeny riterion to prove that the distribu-tion of d-desents of permutations of length n onverge to a normaldistribution as n goes to in�nity. We show that this remains true evenif d is allowed to grow with n.1 IntrodutionLet p = p1p2 � � � pn be a permutation. We say that the pair (i; j) is a d-desent in p if i < j � i+d, and pi > pj. In partiular, 1-desents orrespondto desents in the traditional sense, and (n � 1)-desents orrespond toinversions. This onept was introdued in [2℄ by De Mari and Shayman,whose motivation ame from algebrai geometry. They have proved that ifn and d are �xed, and k denotes the number of permutations of length nwith exatly k d-desents, then the sequene 0; 1; � � � is unimodal, that is,it inreases steadily, then it dereases steadily. It is not known in general ifthe sequene 0; 1; � � � is log-onave or not, that is, whether k�1k+1 � 2kholds for all k. We point out that in general, the polynomialPk kxk doesnot have real roots only. Indeed, in the speial ase of d = n� 1, we get thewell-known [1℄ identityXk kxk = (1 + x) � (1 + x+ x2) � � � � � (1 + x+ � � �+ xn�1);whih has all nth roots of unity as roots. Indeed, in this ase, a d-desentis just an inversion, as we said above.1



In this paper, we prove a related property of generalized desents byshowing that their distribution onverges to a normal distribution as thelength n of our permutations goes to in�nity. Our main tool is Janson'sdependeny riterion, whih is a tool to prove normality for sums of boundedrandom variables with a sparse dependeny graph. While the proof itselfis reasonably straightforward, we �nd the very fat that Janson's riterionis being applied to objets usually studied by algebrai, not probabilistiombinatorialists, interesting.2 The Proof of Asymptoti Normality2.1 Bakground and De�nitionsWe need to introdue some notation for transforms of the random variableZ. Let �Z = Z � E(Z), let ~Z = �Z=pVar(Z), and let Zn ! N(0; 1) meanthat Zn onverges in distribution to the standard normal variable.For the rest of this setion, let d � 1 be a �xed positive integer. Let Xn =X(d)n denote the random variable ounting the d-desents of a randomlyseleted permutation of length n. We want to prove that Xn onvergesto a normal distribution as n goes to in�nity, in other words, that ~Xn !N(0; 1) as n! 1. Our main tool in doing so is a theorem alled Janson'sdependeny riterion. In order to state that theorem, we need the followingde�nition.De�nition 1 Let fYn;kjk = 1; 2 � � � g be an array of random variables. Wesay that a graph G is a dependeny graph for fYn;kjk = 1; 2 � � � g if thefollowing two onditions are satis�ed:1. There exists a bijetion between the random variables Yn;k and theverties of G, and2. If V1 and V2 are two disjoint sets of verties of G so that no edge of Ghas one endpoint in V1 and another one in V2, then the orrespondingsets of random variables are independent.Note that the dependeny graph of a family of variables is not unique.Indeed if G is a dependeny graph for a family and G is not a ompletegraph, then we an get other dependeny graphs for the family by simplyadding new edges to G.Now we are in position to state Janson's dependeny riterion.2



Theorem 1 [5℄ Let Yn;k be an array of random variables suh that for alln, and for all k = 1; 2; � � � ; Nn, the inequality jYn;kj � An holds for somereal number An, and that the maximum degree of a dependeny graph offYn;kjk = 1; 2; � � � ; Nng is �n.Set Yn = PNnk=1 Yn;k and �2n = Var(Yn). If there is a natural number mso that Nn�m�1n �An�n �m ! 0; (1)then ~Yn ! N(0; 1):2.2 Applying Janson's CriterionReall that in this setion, d is a �xed positive integer. We are going to provethat the distribution of d-desents of permutations of length n onverges toa normal distribution as n goes to in�nity.We will apply Janson's theorem with the Yn;k being the indiator randomvariables Xn;k of the event that a given ordered pair of indies (indexed byk in some way) forms a d-desent in the randomly seleted permutationp = p1p2 � � � pn. So Nn is the number of pairs (i; j) of indies so that 1 �i < j � i+ d � n. Then by de�nition,Yn = NnXk=1 Yn;k = NnXk=1Xn;k = Xn:There remains the task of verifying that the variables Yn;k satisfy allonditions of Theorem 1.First, it is lear that Nn � nd, and we will ompute the exat value of Nnlater. By the de�nition of indiator random variables, we have jYn;kj � 1,so we an set An = 1 for all n.Next we onsider the numbers �n in the following dependeny graph ofthe family of the Yn;k. Clearly, the indiator random variables that belongto two pairs (i; j) and (r; s) of indies are independent if and only if the setsfi; jg and fr; sg are disjoint. So �xing (i; j), we need one of i = r, i = s,j = r or j = s to be true for the two distint variables to be dependent. Solet the verties of G be the Nn pairs of indies (i; j) so that i < j � i+d, andonnet (i; j) to (r; s) if one of i = r, i = s, j = r or j = s holds. The graphde�ned in this way is a dependeny graph for the family of the Yn;k. Indeed,if V1 and V2 are two disjoint sets of verties of this graph, and there is noedge onneting a vertex in V1 to a vertex in V2, then there is no index i that3



is present in at least one pair of indies belonging to V1 and at least one pairof indies belonging V2. So the set of indies present in pairs orrespondingto verties in V1 and the set of indies present in pairs orresponding toverties in V2 are disjoint, and therefore, set of variables orresponding toV1 and the set of variables orresponding to V2 are independent.For a �xed pair (i; j), eah of the four equalities i = r, i = s, j = r orj = s ours at most d times. (For instane, if i = s, then r has to be oneof i� 1; i � 2; � � � ; i� d.) Therefore, �n � 4d.If we take a new look at (1), we see that the Janson riterion will besatis�ed if we an show that �n is large. This is the ontent of the nextlemma.Lemma 1 If n � 2d, thenVar(Xn) = 6dn+ 10d3 � 3d2 � d72 : (2)In partiular, Var(Xn) is a linear funtion of n.Note that in partiular, for d = 1, we get the well-known fat [1℄ thatthe variane of Eulerian numbers in permutations of length n is (n+1)=12.Proof: By linearity of expetation, we haveVar(Xn) = E(X2n)� (E(Xn))2 (3)= E0� NnXk=1Xn;k!21A� E NnXk=1Xn;k!!2 (4)= E0� NnXk=1Xn;k!21A� NnXk=1E(Xn;k)!2 (5)= Xk1;k2E(Xn;k1Xn;k2)� Xk1;k2E(Xn;k1)E(Xn;k2) (6)Clearly, E(Xn;k) = 1=2, so the N2n summands that appear in the lastline of the above hain of equations with a negative sign are eah equal to1=4. As far as the N2n summands that appear with a positive sign, most ofthem are equal to 1=4. More preisely, if Xn;k1 and Xn;k2 are independent,then E(Xn;k1Xn;k2) = E(Xn;k1)E(Xn;k2) = 14 :If k1 = k2, then E(Xn;k1Xn;k2) = E(X2k1 = E(Xk1) = 1=2. Otherwise,if Xn;k1 and Xn;k2 are dependent, then either E(Xn;k1Xn;k2) = 1=3, or4



E(Xn;k1Xn;k2) = 1=6. Indeed, if Xk1 is the indiator variable of the pair(i; j) being a d-desent and Xk2 is the indiator variable of the pair (r; s) be-ing a d-desent, then as we said above, Xn;k1 and Xn;k2 are dependent if andonly if one of i = r, i = s, j = r or j = s holds. If i = r or j = s holds, thenE(Xn;k1Xn;k2) = 1=3, and if i = s or j = r holds, then E(Xn;k1Xn;k2) = 1=6.Indeed, for instane, with i = r, we have Xn;k1 = Xn;k2 = 1 if and only ifpi is the largest of the entries pi, pj , and ps. Similarly, with i = s, we haveXn;k1 = Xn;k2 = 1 if and only if pr > pi > pj.We will now ount how many summands E(Xn;k1Xn;k2) are equal to 1=2,to 1=3, and to 1=6.1. First, E(Xn;k1Xn;k2) = 1=2 if and only if k1 = k2. This happens Nntimes, one for eah pair (i; j) so that i < j � i + d. For a given i,there are d suh pairs if i � n� d, and d� t suh pairs if i = n� d+ t,so Nn = (n� d)d+ (d� 1) + (d� 2) + � � �+ 1 = (n� d)d +�d2�:2. Seond, E(Xn;k1Xn;k2) = 1=3 if i = r, or j = s. By symmetry, wean onsider the �rst ase, then multiply by two. If i � n � d, thenwe have d(d � 1) hoies for j and s, and if i = n � d + t, then wehave (d� t)(d� t� 1) hoies. So the number of pairs (k1; k2) so thatE(Xn;k1Xn;k2) = 1=3 is2(n� d)d(d� 1) + 2(d � 1)(d� 2) + 2(d� 2)(d � 3) + � � �+ 2 � 2 � 1 =2(n� d)d(d � 1) + 4�d3�:3. Finally, E(Xn;k1Xn;k2) = 1=6 if i = s, or j = r. By symmetry, we anagain onsider the �rst ase, then multiply by two. If d � i � n� d,then there are d2 hoies for (j; r). If i � d, then there are d hoiesfor j, and i� 1 hoies for r. If n� d < i, then there are n� i hoiesfor j, and d hoies for r, assuming that n � 2d. So the number ofpairs (k1; k2) so that E(Xn;k1Xn;k2) = 1=6 is2(n�2d)d2+2(d�1)d+2(d�2)d+ � � �+2d = 2(n�2d)d2+d2(d�1):For all remaining pairs (k1; k2), the variables Xn;k1 and Xn;k2 are in-dependent, and so E(Xn;k1Xn;k2) = 1=4.5



Comparing our results from ases 1-3 above with (3), and realling thatin all other ases, E(Xn;k1Xn;k2) = 1=4, we obtain the formula that was tobe proved. 3The proof of the main result of this setion is now immediate.Theorem 2 Let d be a �xed positive integer. Let Xn be the random variableounting d-desents of a randomly seleted n-permutation. Then ~Xn !N(0; 1).Proof: Use Theorem 1 with Yn = Xn, �n = 4d, Nn = (n� d)d + �d2�, and�n = q6dn+10d3�3d2�d72 . All we need to show is that there exists a positiveinteger m so that�(n� d)d+�d2�� � (4d)m�1 � � 726dn+ 10d3 � 3d2 � d�m=2 ! 0;for whih it suÆes to �nd a positive integer m so that(dn) � (4d)m�1 �� 12dn�m=2 ! 0: (7)Clearly, any m � 3 suÆes, sine for any suh m, the left-hand side is of theform C=n�, for positive onstants C and �. 33 When d grows with nWe see from (7) that the statement of Theorem 2 an be strengthened, froma onstant d to a d that is a funtion of n. Indeed, (7) is equivalent to sayingthat n�dn�m=2 ! 0:This onvergene holds as long as d � n1�� for some �xed positive �, we anhoose m so that (m=2) � � > 1, and then ondition (7) will be satis�ed. Sowe have proved the following.Proposition 1 Let n ! 1, and let us assume that there exists a positiveonstant � so that for n suÆiently large, d = d(n) � n1��. Let Xn bede�ned as before. Then ~Xn ! N(0; 1):6



Now let d be suh that n0:5 < d � n=2 holds. Then we an revisit Lemma1 for another appliation. Note that as n � 2, formula (2) implies thatVarXn > d38 : (8)Using this estimate for �n = pV ar(Xn) in (1), we see that it suÆes toshow that there exists a natural number m so that�nd+�d2�� � (4d)m�1 � 8d3=2�m < 2d3 � 32mdm=2 ! 0:This is learly true, sine any m > 6 will suÆe. Therefore, we have im-proved our result as follows.Proposition 2 Let n ! 1, and let us assume that d � n=2. Let Xn bede�ned as before. Then ~Xn ! N(0; 1):This leaves the ase of d > n=2. In that ase, Lemma 1 has to be modi�edsine we annot enumerate pairs pairs (k1; k2) so that E(Xn;k1Xn;k2) = 1=6in the same way as we have done in ase 3 of the proof of that lemma.Indeed, no matter what i is, it will never happen that both of i�d and i+dare valid indies.So let us assume that d > n=2, and let us ount all pairs (k1; k2) so thatE(Xn;k1Xn;k2) = 1=6. For symmetry reasons, we an ount pairs of indies(i; j) and (r; s) so that i = s, and then multiply their number by 2. The arethree subases to onsider(a) If 1 � i � n� d, then we have i� 1 hoies for r and d hoies for j.(b) If n � d + 1 � i � d, then we have (i � 1) hoies for r, and n � ihoies for j.() If d+ 1 � i � n, then we have d hoies for r and n� i hoies for j.This implies that the number of pairs (k1; k2) so that E(Xn;k1Xn;k2) =1=6 is 2 n�dXi=1(i� 1)d+ Xi=n�d+1 d(i� 1)(n� i) + nXi=d+1 d(n� i)! =�n3 + 3n2 � 2n+ 2d3 + 6d2 + 4d+ 6n2d� 6nd2 � 12nd3 :7



The other ases of the proof of Lemma 1 are unhanged. So omparingthe new, modi�ed Case 3 to Cases 1 and 2 of Lemma 1 leads to the followinglemma.Lemma 2 Let n=2 < d � n� 1. ThenVar(Xn) = 2n3 � 6n2 + 4n� 12d3 � 21d2 � 9d� 12n2d+ 24nd2 + 30nd+ 1872 :(9)In partiular, we laim that this implies that there exists a positiveonstant  so that Var(Xn) > n3 for n suÆiently large. Indeed, let d = an,where 0:5 � a � 1. Then the terms of degree three of (9) are2n3 � 12d3 � 12n2d+ 24nd2 = n3 �2� 12(a(a � 1)2)� :Set f(a) = 12(a(a� 1)2), and note that f 0(a) = 36a2 � 48a+ 12 is negativein a 2 [0:5; 1). So on that interval, f is dereasing, and so its maximal valueis f(0:5) = 1:5. Therefore, the last displayed equation implies that2n3 � 12d3 � 12n2d+ 24nd2 = n3(2� f(a)) � 0:5n3:As all other terms on the right-hand side of (9) are of smaller degree, thelaim that Var(Xn) > n3 is proved.We an now state our omprehensive result.Theorem 3 Let n and d be positive integers so that d � n holds. Let Xnount the d-desents of a randomly seleted permutation of length n. Then~Xn ! N(0; 1):Proof: We have previously handled the ases of d � n=2, so now we onlyhave to prove the statement for n=2 < d � n. Apply the Janson DependenyCriterion (Theorem 1) with the estimates �n � n3=2, �n � 4n, An = 1, andNn � 2n2. Then the riterion will be satis�ed if we �nd a natural numberm so that 2n2 � (4n)m�1n1:5m ! 0as n goes to in�nity. Clearly, any m � 3 will suÆe. 3
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4 Further DiretionsA possible diretion for generalizations, suggested by Rihard Stanley, is thefollowing. Let d = (d1; d2 � � � ; dn�1), where the di are positive integers. Ifp = p1:::pn is in an n-permutation, let fd(p) be the number of pairs (i; j)suh that 0 < j � i � di and pi > pj. For instane, if d = (1; 1; :::; 1) thenfd(p) is the number of desents of p. If d = (n� 1; n� 2; :::; 1) then fd(p) isthe number of inversions of p. It is known [2℄, by an argument from algebraigeometry, that if k = jfp 2 Sn : fd(p) = kgj;then the sequene 0; 1; � � � is unimodal. Log-onavity and normality arenot known. Note that in this paper, we have treated the speial ase ofd = (d; d; � � � ; d). AknowledgmentI am thankful to Rihard Stanley who introdued me to the topi ofgeneralized desents. I am also indebted to Svante Janson who pointed outhow to improve my results in this paper.Referenes[1℄ M. B�ona, Combinatoris of Permutations, CRC Press - ChapmanHall, 2004.[2℄ F. De Mari, M. A. Shayman, Generalized Eulerian numbers and thetopology of the Hessenberg variety of a matrix. Ata Appl. Math. 12(1988), no. 3, 213{235.[3℄ P. Diaonis, Group Representations in Probability and Statistis, In-stitute of Mathematial Statistis Leture Notes, 11, 1988.[4℄ J. Fulman, Stein's Method and Non-reversible Markov Chains. Stein'smethod: expository letures and appliations, 69{77, IMS LetureNotes Monogr. Ser., 46, Inst. Math. Statist., Beahwood, OH, 2004.[5℄ Normal onvergene by higher semi-invariants with appliations to sumsof dependent random variables and random graphs. Ann. Prob. 16(1988), no. 1, 305-312. 9


