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Abstract

This paper uses combinatorics and group theory to answer questions about
the assembly of icosahedral viral shells. Although the geometric structure of the
capsid (shell) is fairly well understood in terms of its constituent subunits, the
assembly process is not. For the purpose of this paper, the capsid is modeled by
a polyhedron that is a subdivision of the icosahedron and whose facets represent
the monomers. The assembly process is modeled by a rooted tree, the leaves
representing the facets of the polyhedron, the root representing the assembled
polyhedron, and the internal vertices representing intermediate stages of assembly
(subsets of facets). Besides its virological motivation, the enumeration of orbits of
trees under the action of a finite group is of independent mathematical interest. If
G is a finite group acting on a finite set X, then there is a natural induced action
of G on the set TX of trees whose leaves are bijectively labeled by the elements of
X. If G acts simply on X, then |X| := |Xn| = n · |G|, where n is the number of
G-orbits in X. The basic combinatorial results in this paper are (1) a formula for
the number of orbits of each size in the action of G on TXn

, for every n, and (2)
a simple algorithm to find the stabilizer of a tree τ ∈ TX in G that runs in linear
time and does not need memory in addition to its input tree. These results help to
clarify the effect of symmetry on the probability of the occurance of a particular
assembly pathway for a icosahedral viral capsid, and more generally for any finite,
symmetric macromolecular assembly.
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Figure 1: (Left) Basic Viral Structure. (Right) Minute virus of Mice X-ray and monomer
structure (courtesy [1]).

1 Introduction

Viral shells, called capsids, encapsulate and protect the fragile nucleic acid genome
from physical, chemical, and enzymatic damage. Francis Crick and James Watson
(1956) were the first to suggest that viral shells are composed of numerous identical
protein subunits called monomers. For many viruses, these monomers are arranged
in either a helical or an icosahedral structure. We are interested in those shells that
possess icosahedral symmetry. For many virus families the structure of the capsid is
well understood and substantiated by crystallographic images. However, the viral capsid
assembly process - like many other spontaneous macromolecular assembly processes -
is not well understood, even for the simplest viral shells with the smallest number of
monomers. In many cases, the capsid self-assembles spontaneously, rapidly and quite
accurately in the host cell, with or without enclosing the internal genomic material, and
without the use of chaperone, scaffolding or other helper proteins. This is the type of
assembly we address here.

1.1 Viral Structure Basics

Icosahedral viral shells can be classified based on their polyhedral structure, facets
corresponding to the monomers. Note that, while an icosahedron has 20 faces, an
icosahedrally symmetric polyhedron can have several facets associated with each of these
faces. The classical “quasi-equivalence theory” of Caspar and Klug [6] explains the
structure of the polyhedral shell in the case where the monomers have very similar
neighborhoods. According to the theory, the number of facets in a viral polyhedron is
60T , where the T -number is of the form h2 + hk + k2. Here h and k are non-negative
integers. In the case of a T = 1 polyhedron, there are 3 facets associated with each face
of the icosahedron. See Figure 1 for basic icosahedral structure and X-ray structure of
a T = 1 virus. Although the results of this paper apply to all icosahedrally symmetric
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polyhedra, or even polyhedra with other symmetry groups, we often use T = 1 polyhedra
for the purpose of illustration.

1.2 Viral assembly models

Many mathematical models of viral shell assembly have been proposed and studied
including [2, 4, 13, 15, 16, 17, 26, 27, 28]. Here we use the GT (geometry and tensegrity)
model of [19]. In the GT model, information about the construction (or decomposition)
of the viral shell is represented by an assembly tree (formal definition in Section 3).
Informally, vertices of the tree represent subassemblies that do not disintegrate during
the course of the assembly process. In an assembly tree, these subassemblies are partially
ordered by containment, with the root representing the complete assembled structure,
and the leaves representing the monomers. That is, we only consider trees that represent
successful assemblies. See Figure 2 for our labeling of a T = 1 polyhedron, and Figures 3,
4, 5 for examples of assembly trees. In these Figures, for ease of viewing, the leaves of the
original assembly trees (corresponding to monomers in the viral shell) have been deleted.
The resulting leaves, that is, the parents of the original leaves, represent pentamers in
the viral shell.

Besides being intuitive and analyzable, it was shown in [19] that the GT model’s
rough predictions fit experimental and biophysical observations of known viral assem-
blies, specifically those of the viruses MVM (Minute Virus of Mice), MSV (Maize Streak
Virus) and AAV4 (Human Adeno Associate Virus).

The GT model was developed to answer questions that concern only the influence of
two factors on the probability of classes of assembly trees. The icosahedral group acts
simply on the set of facets of any icosahedrally symmetric polyhedron (monomers of the
shell). A group G acts simply on a set X if, for any x ∈ X, if g(x) = x, then g must be
the identity. Informally, the classes of assembly trees that the GT model considers are
the orbits of assembly trees under the action of the icosahedral group, and are refered
to as assembly pathways (see also Section 1.3 and formal definition in Section 3). See
Figures 3, 4 for examples of distinct assembly trees that belong to the same orbit and
hence are representatives of the same assembly pathway. We call these two factors the
geometric stability factor and the symmetry factor. The higher these quantities, the
higher the probability.

1.3 Factors influencing assembly

There are two main factors that influence the probability of an assembly pathway, the
geometric stability factor and the symmetry factor. These are informally described next.
Most of the results in [19] concern the geometric stability factor. The capsid is assem-
bled in stages, the subassembly at each stage represented by a vertex of the assembly
tree. Although it is an open problem to predict assembly intermediates, even for known
structures, each subassembly must satisfy certain geometric constraints within or be-
tween monomers. These constraints are equalities and inequalities that involve distances,
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Figure 2: (Left) Vertex labeling of an icosahedron used in this paper. NOTE: each
vertex label represents a pentamer in the corresponding T = 1 polyhedron, i.e, the
collection of 5 monomers or facets surrounding the icosahedral vertex, as shown in the
lower right corner of the (Left) of Figure 1 (Right) result of action of the permutation
(0u)(0l)(1u 2u 3u 4u 5u)(1l 2l 3l 4l 5l).
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Figure 3: (Left) For ease of drawing, we have omitted the leaves in our T = 1 assembly
trees. The leaves in our drawing represent the T = 1 polyhedron’s pentamers (labeled
by vertices of underlying icosahedron) as in Figure 2, and arrows representing action
of permutation in Figure 2; (Right) result of action yields another tree in its orbit, i.e,
another representative of the same assembly pathway.
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Figure 4: (Left) another assembly tree with leaf labels as in Figure 4 (Right) result of ac-
tion of permutation in Figure 2 yields another tree in its orbit, i.e, another representative
of the same assembly pathway.
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Figure 5: (Left) an assembly tree with leaf labels as in Figure 4 that is fixed by the
permutation represented by the arrows, namely (0u 1u 2u)(5u 4l 3u)(3l 5l 4u)(0l 1 2);
(Right) shaded faces of the icosahedron represent the internal nodes of the tree, one
level up from the leaves: one of these faces is fixed by the permutation and the other
three map on to each other cyclically.

5



angles, and forces, obtained either from X-ray or from cryo-electro-microscopic informa-
tion on the complete viral shell. In addition, each subassembly must be sufficiently
constrained so as to be rigid. Some assembly trees fail to satisfy the rigidity condition
and can never occur (probability 0). Such assembly trees are called geometrically in-
valid. A valid assembly tree can be assigned a non-zero probability according to how
difficult it is to find a solution to the constraints on each subassembly. This probability
- called the geometric stability factor - is computed in terms of the algebraic complex-
ity of the configuration space determined by the constraints [19]. How the geometric
stability factor is correlated with biochemical stability and entropy is also explained in
[19]. This factor is computed by analyzing the corresponding subsystems of the given
viral geometric constraint system. As done in [19], it is mathematically justified to [12]
treat the rigidity aspect of the geometric stability factor as a generic, graph-theoretic
property.

Based on the geometric stability factor, some assembly trees can be shown to never
occur (have probability zero) since the subassemblies present in them are unstable (their
geometric stability factor is zero). Such assembly trees are geometrically invalid.

The symmetry factor is defined as follows. As mentioned earlier, the icosahedral
group acts on the set of assembly trees for a particular viral polyhedron P . The facets
of P (representing viral monomers) are the leaves of the tree. However, Figures 3, 4, 5 all
abbreviate the trees so that the leaves represent the 5 facets surrounding a vertex of the
icosahedron, i.e., a pentamer. The non-leaf vertices are collections of facets (representing
subassemblies of monomers. This action is defined precisely in Section 3. Each orbit
under this action is called an assembly pathway and corresponds intuitively to a distinct
type of assembly process for the viral capsid. The cardinality of an assembly pathway is
the number of assembly trees in the orbit. The symmetry factor of an assembly pathway
is its cardinality divided by the total number of assembly trees.

In [20], the authors observed the following attractive feature of the GT model of
assembly. The two separate factors - geometric stability and symmetry - that influence
the probability of the occurrence of a particular assembly pathway can be analyzed
largely independently as follows. An obvious, but crucial, observation made in [20] is
that the geometric stability factor and is an invariants of the assembly pathway. That is,
it is the same for any assembly tree in the same orbit under the action of the icosahedral
group.

We assume that each assembly tree is equally likely to occur. Thus the probability
of the occurrence of a pathway is roughly proportional to some combination of the
symmetric factor and the geometric stability factor. Additionally, the ratio of the orbit
sizes of two trees τ1 and τ2 could serve as a rough estimate of the the ratio of the
probabilities of the corresponding assembly pathways - provided that the former ratio
is not cancelled out or reversed by the ratio of the geometric stability factor of τ1 and
τ2. The paper [3] provides a proof that this kind of cancelling out would not generally
take place, at least for valid pathways, for the following reasons. First, it is shown in
[3] that the symmetry factor of a pathway increases with the depth of its representative
tree τ . More precisely, it was proved that the size of the orbit of τ is bounded below by
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the depth of τ . Based on computational experiments, we conjecture that the orbit size
in fact increases with the depth of τ , although this has not yet been proven, see Section
8. Moreover, it is known from [19] that the geometric stability generally increases with
the depth of the tree (and this correlates with biophysical observations). Therefore, if
the depth of τ1 is greater than the depth of τ2, then both the symmetric factor and the
geometric stability factor of τ1 are expected to be generally larger than the corresponding
factors of τ2.

2 Contributions and Related Work

Based on the observations in the last section, the paper [3] posed problems intended
to isolate and clarify the influence of the symmetry factor on the probability of the
occurrence of a given assembly pathway. Two specific problems were the following.

(i) Enumerate the valid assembly pathways of an icosahedrally symmetric polyhedron.
More precisely, the problem is to determine the number of such assembly pathways
of each cardinality.

(ii) Characterize and algorithmically recognize the set of assembly trees fixed by a
given subgroup of the icosahedral group. This characterization problem is a step
toward the solution of the enumeration problem (i). Algorithmic recognition of
the group elements that fix a given assembly tree (the stabilizer of the tree in the
given group) directly determines whether the given assembly tree has a given orbit
size.

In this paper, we answer the above questions for general assembly trees, that is,
we drop the condition of validity. Furthermore, in this paper, the geometric stability
factor will be ignored, and thus “probability” will refer to the symmetry factor only. We
expect that the techniques developed in this paper will help in answering questions (i)
and (ii) in the presence of the validity condition as well. In addition, these techniques
generalize to assembly trees for other symmetric polyhedra. Hence their application
extends beyond viral capsids to other finite, symmetric, macromolecular assemblies.

For Problem (i), we develop an enumeration method using generating functions and
Möbius inversion. For the algorithm in Problem (ii), we provide a simple permutation
group algorithm and an associated data structure. The results of this paper work, not
just for the icosahedral group, but also for any finite group G acting simply on a set X.
Indeed, if G is a finite group acting on a set X, then there is a natural induced action of
G on the set TX of assembly trees. These are formally defined as rooted trees τ whose
non-leaf vertices have at least two children and whose leaves are bijectively labeled by
X.

Concerning Problem (i), Pólya theory gives a convenient method for counting orbits
under a permutation group action. However, because of the intractability of computing
the cycle index in our situation, we were not able to apply Pólya theory to Problem
(i). Specifically, in order to use Pólya theory to even compute the size of the G-orbit
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of an assembly tree τ , it is not even clear how to define an appropriate group Gτ for
which cycle indices will yield the sizes of these orbits; the cycle indices will be difficult to
describe since they will depend on both G and the automorphism group of the specific
tree τ . Similarly, the methods used in [14] for enumerating labeled graphs under a group
action (as opposed to rooted labeled trees), do not apply in any straightforward manner.
If one is only interested in asymptotic estimates for Problem (i), such as in viruses
with large T-numbers, a possible avenue is to use the results of [7, 25] that estimate
the asymptotic probabilities of logic properties on finite structures, especially trees.
There are significant roadblocks, however, to applying these results to our problem. For
example, in order to directly employ such a result, it would at least be necessary to
show that the tree property of not being fixed by any group element (other than the
identity) in a given permutation group is a monadic second order property. In addition
it would be necessary to extend the result in [7] from the general class of trees in the
denominator to the special class of assembly trees in the denominator. Finally, there is
a rich literature on the enumeration of construction sequences of symmetric polyhedra
and their underlying graphs [5, 9, 10]. Whereas these studies focus on enumerating
construction sequences of different polyhedra with a given number of facets, our goal
- of counting and characterizing assembly tree orbits - is geared towards enumerating
construction sequences of a single polyhedron for any given number of facets.

Our method for solving Problem (i), on the other hand, finds an explicit formula
(Theorem 3) for the number of assembly pathways of each possible cardinality. If G is
a finite group acting simply on a finite set X, then

|X| = n · |G|, (1)

where n is the number of G-orbits in X. If |Xn| = n · |G|, consider the natural induced
action of G on the set TXn

of assembly trees whose leaves are bijectively labeled by the
elements of Xn. If G acts simply on Xn, then Our method finds the number of orbits
of each possible size in the action of G on the set TXn

of assembly trees, for every n.
This leads to a formula for the probability of occurrence of any given assembly pathway
(Corollary 5). In order to apply this formula, it is necessary to know the number of
assembly trees fixed by each given subgroup of G. A generating function formula for
this number of fixed assembly trees is given in Theorem 16 of Section 6. For the proof
of Theorem 16, it is necessary to characterize the set of such fixed assembly trees. This
is done in Theorem 9 of Section 5.

Concerning Problem (ii), the subject of permutation group algorithms is well de-
veloped (see for example [18]). The structure of the automorphism group of a rooted,
labeled trees has been studied [11, 24], and algorithms for tree isomorphism and au-
tomorphism are well known [8, 22]. However, we have not encountered an algorithm
in the literature for deciding whether a given permutation group element fixes a given
rooted, labeled tree - thus determining the stabilizer of that tree in the given group.
In Section 4 of this paper, we provide a simple and intuitive algorithm that is easy to
implement, runs in linear time and operates in place on the input, without the use of
extra scratch memory.
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2.1 Organization

The remainder of the paper is organized as follows. Section 3 begins with preliminaries
on group action on assembly trees. The section concludes with a formula for the number
of assembly pathways of each cardinality under the action of a group G. This formula
is in terms of the numbers tH of assembly trees fixed by a subgroup H of G. Section
5 uses block systems to characterize the structure of assembly trees that are fixed by a
given group H . This leads, in Section 6, to a generating function to enumerate them,
i.e. to compute the numbers tH . Section 4 gives an algorithm for finding the stabilizer
of an assembly tree in a given group or, equivalently, for recognizing if an assembly tree
has a given orbit size. In Section 7, the results are applied to the case of the icosahedral
group and to T = 1 viral shell assembly pathways. Finally, Section 8 concludes with open
problems. Our exposition contains several examples for illustrating concepts and results;
in particular, one running example, introduced in Example 1, is carried throughout the
paper.

3 Preliminaries on Assembly Pathways

All groups and graphs in this paper are assumed to be finite. A rooted tree is a tree
with a designated vertex, called the root. We will use standard terminology such as
adjacent, child, parent, descendent, ancestor, leaf, subtree rooted at, root of the subtree
and so on. Two rooted trees τ and τ ′ are said to be isomorphic if there is a bijection -
the isomorphism - f between the vertices of τ and τ ′ that preserves adjacency and the
root. That is, the following hold:

• (u, v) is an edge in τ if and only if (f(u), f(v)) is an edge in τ ′,

• f(r) = r′, where r and r′ are the roots of τ and τ ′ respectively.

In this case, we say τ ≈ τ ′ and also f(τ) = τ ′.
A rooted tree τ for which each internal vertex has at least two children and whose

leaves are bijectively labeled with elements of a set X is called an assembly tree for X.
The 26 assembly trees with four leaves, labeled in the set X = {1, 2, 3, 4} are shown in
Figure 6. To each vertex v of τ , associate the set of all leaves of X that are descendents
of v. The vertex v is labeled with this subset of X, and we often make no distinction
between the vertex and its label. Note that the label of a vertex is the union of the
labels of its children. So each assembly tree τ has a labeling L : τ → 2X , taking each
vertex to a nonempty subset of X. Call two labeled, rooted trees identical if there is an
(unlabeled) isomorphism f between them such that, in addition,

• L(f(u)) = L(u) for all vertices u.

In other words, two labeled trees are identical if there is a bijection between their vertex
sets that preserves adjacency, the root, and the labels. In this case we write τ = τ ′.
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Let G be a group acting on a set X, and let τ be an assembly tree in TX . The action
of G on X induces a natural action of G on the power set of X and thereby on the set of
vertices (vertex labels) of τ . If g ∈ G, then define the tree g(τ) as the unique assembly
tree whose set of vertex labels (including the labels of internal vertices) is {g(v) : v ∈ τ}.
Thus we have an induced action of G on TX . See Figures 3, 4 for an illustration. The
tree g(τ) is clearly isomorphic to τ via g. Therefore, each orbit of this action of G on TX

consists of isomorphic trees. Any such orbit is called an assembly pathway for (G, X).

Example 1 Klein 4-group acting on T4.

Consider the Klein 4-group G = Z2 ⊕ Z2 acting on the set X = {1, 2, 3, 4}. Writing
G as a group of permutations in cycle notation, this action is

G = {(1)(2)(3)(4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

For this example there are exactly 11 assembly pathways, which are indicated in Figure 6
by boxes around the orbits. There are four assembly pathways of size one, i.e., with
one assembly tree in the orbit, three assembly pathways of size two, and four assembly
pathways of size four.

An assembly tree τ is said to be fixed by an element g ∈ G if g(τ) = τ . See Figure
5 for an illustration. For any subgroup H of G, let tX(H) denote the number of trees
in TX that are fixed by a subgroup H of G. Furthermore, let t(H) := tX(H) denote the
number of trees in TX that are fixed by all elements of H and by no other elements of
G. In other words,

tX(H) = |{τ ∈ TX | stabG(τ) = H}|. (2)

Here stabG(τ) := {g ∈ G | g(τ) = τ} is called the stabilizer of τ in G. In other words,
stabG(τ) is the set of all elements in G that fix τ . It is easy to prove that stabG(τ) is a
subgroup of G.

We will see in Section 6 that it is more natural to find tX(H), than tX(H). The set
enumerated by tX(H) may include trees that are fixed by larger subgroups H ′ such that
H ≤ H ′ ≤ G. As the following theorem shows, the desired quantities tX(H) can then be
computed from the numbers tX(H) using Möbius inversion on the lattice of subgroups
of G.

Theorem 2 Let G be a group acting on a set X. If H is a subgroup of G, then

tX(H) =
∑

H≤K≤G

µ(H, K) tX(K),

where µ is the Möbius function for the lattice of subgroups of G.

Proof: Clearly tX(H) =
∑

H≤K≤G tX(K). The theorem follows from the standard
Möbius inversion formula [23, page 333].

The index of a subgroup H in G is the number of left (equivalently, right), cosets of
H in G, and is denoted by (G : H). By Lagrange’s Theorem, this index equals |G|/|H|.
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Figure 6: Klein 4-group acting on T4.
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Theorem 3 The number of trees in any assembly pathway for (G, X) divides |G|. If m
divides |G|, then the number N(m) of assembly pathways of cardinality m is

N(m) =
1

m

∑

H≤G : (G:H)=m

t(H).

Proof: It is a standard consequence of Lagrange’s Theorem that, for any assembly tree
τ , the equality

|G| = |O(τ)| · |stab(τ)|

holds, where O(τ) is the orbit of τ . This immediately implies the first statement of the
theorem.

Let

δ(τ) =

{
1 if (G : stab(τ)) = m

0 otherwise
=

{
1 if |O(τ)| = m

0 otherwise.

Now count, in two ways, the number of pairs (H, τ) where τ is an assembly tree, H ≤ G
is the stabilizer of τ , and (G : H) = m:

∑

H≤G : (G:H)=m

t(H) =
∑

τ∈TX

δ(τ) = m N(m).

Indeed, to justify the first equality, note that for a fixed subgroup H that has index m
in G, exactly t̄(H) trees τ will satisfy δ(τ) = 1. To justify the second equality, note that
δ(τ) = 1 if and only if τ is one of m elements of an m-element pathway, and there are
N(m) such pathways.

Example 4 Klein 4-group acting on T4 (continued).

Theorem 3, applied to our previous example of Z2 ⊕ Z2 acting simply on {1, 2, 3, 4},
states that the size of an assembly pathway must be 1, 2 or 4, since it must be a divisor
of 4 = |Z2 ⊕ Z2|. To find the number of pathways of each size, note that G has three
subgroups of order 2, namely

K1 = { (1)(2)(3)(4), (1 2)(3 4) },

K2 = { (1)(2)(3)(4), (1 3)(2 4) },

K3 = { (1)(2)(3)(4), (1 4)(2 3) },

and that
t(G) = 4,

t(K1) = t(K2) = t(K3) = 2,

t(K0) = 16,

where K0 denotes the trivial subgroup of order 1. The assembly trees in TX that are
fixed by all elements of G are shown in Figure 6, A, B, C, D. For i = 1, 2, 3, those
assembly trees in TX that are fixed by all elements of Ki and by no other elements of
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G are are shown in Figure 6, E, F, G, respectively. The remaining 16 assembly trees
in Figure 6 are fixed by no elements of G except the identity. Therefore, according to
Theorem 3, the number of pathways of size 1, 2 and 4 are, respectively,

t(G) = 4,

1

2

(
t(K1) + t(K2) + t(K3)

)
=

1

2
(2 + 2 + 2) = 3,

1

4
t(K0) = 4.

A general formula for t(H) is the subject of Sections 5 and 6.

The set TX of assembly trees can be made the sample space of a probability space
(TX , p) by assuming that each assembly tree τ ∈ TX is equally likely, i.e., p(τ) = 1/|TX |.
This assumption is in accordance with the fact that we disregard the geometric stability
factor that would assign different probabilities to different assembly trees. With this
assumption, it is clear that if O is an assembly pathway, then

p(O) =
|O|

|TX |
.

The following result follows immediately from Theorem 3.

Corollary 5 If G acts on the set X and m divides |G|, then, with notation as in
Theorem 3, there are exactly N(m) assembly pathways with probability m

|TX |
, and no

other values can occur as the probability of an assembly pathway.

Example 6 Klein 4-group acting on T4 (continued).

Again, for our example of Z2⊕Z2 acting simply on {1, 2, 3, 4}, application of Corollary 5
gives

4 pathways with probability
1

26
,

3 pathways with probability
1

13
,

4 pathways with probability
2

13
.

4 Algorithm for determining the stabilizer of an as-

sembly tree in a given finite group

The algorithm in this section takes as input a finite permutation group G acting on a
finite set X and an assembly tree τ ∈ TX , and finds the stabilizer stabG(τ). The idea
behind the algorithm is encapsulated by the following proposition, whose proof follows
directly from definitions given in Section 2. As defined in Section 3, the action of the
permutation group G on X induces a natural action of G on TX .
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Proposition 7 Let the finite permutation group G act on a finite set X, and let τ ∈ TX .

1. Let R be any set of elements of G that fix τ , and let C be any set of elements of
G that do not fix τ . Then 〈R〉, the group generated by the elements of R, is a
subgroup of stabG(τ) and

⋃
c∈C

c〈R〉, the union of the left cosets of 〈R〉 given by C,

has an empty intersection with stabG(τ).

2. An element g ∈ G fixes τ if and only if for every vertex v ∈ τ with children
c1(v), . . . , ck(v), the vertices g(c1(v)), . . . , g(ck(v)) have a common parent in τ ,
and this parent is g(v).

4.1 Input and Data Structures

In this subsection, we give the detailed setup for our stabilizer-finding algorithm. The
input of this algorithm is the set of elements g of the finite permutation group G acting
on the finite set X and an assembly tree τ ∈ TX .

We use a tree data structure, where each vertex has a child pointer to each of its
children and a parent pointer to its parent. The root (and the tree τ itself) can be
accessed by the root pointer. Furthermore, each permutation g ∈ G on X is input as
a set of g-pointers on the leaves. That is, a leaf labeled u has a g-pointer to the leaf
labeled g(u). However, the labels are not explicitly stored except at the leaves. This is
a common data structure used in permutation group algorithms [18].

4.2 Algorithms

The first algorithm computes stabG(τ), and it uses the second and third algorithms
for determining whether a permutation g fixes τ . The correctness of the first algorithm
follows directly from Proposition 7 (1), assuming the correctness of the latter algorithms.
The last algorithm is recursive and operates in place with no extra scratch space. For
each vertex v, working bottom up, it efficiently checks whether the image g(v) is in τ .
The correctness follows directly from Proposition 7 (2).

Algorithm Stabilizer

Input: assembly-tree τ ∈ TX ; permutation group, G
Output: generating set Rτ s.t. the group 〈Rτ 〉 generated by Rτ is exactly stabG(τ).

R := {id} (currently known partial generating set of stabG(τ))
CR := ∅ (distinct left coset representatives of 〈R〉

that are currently known to not fix τ)
U := G (currently undecided elements of G)
do until U = ∅
let g ∈ U
if Fixes(g, τ)
then R := R ∪ {g}; retain in CR at most one

14



representative from any left coset of 〈R〉
else CR := CR ∪ {g};

U := (U \ (〈R〉
⋃

c∈CR

c〈R〉)

fi

od

return Rτ := R.

Algorithm Fixes

Input: assembly-tree τ ∈ TX ; permutation g acting on X,
Output: “true” if g fixes τ ; “false” otherwise.

if LocateImage(g, τ, root(τ)) = root(τ)
then return true

else return false.

Algorithm LocateImage

Input: assembly-tree τ ∈ TX ; permutation g acting on X; child pointer to a vertex v ∈ τ
(root pointer if v is the root of τ).
Output: a parent pointer to the vertex g(v) ∈ τ - if it exists - such that g is the isomor-
phism mapping the subtree of τ rooted at v to the subtree of τ rooted at g(v); if such
a vertex g(v) does not exist in τ , returns null.

if v is a leaf of τ (null child pointer)

then return g(v) (follow g-pointer)
else

let c1, . . . , ck be the children of v;
if parent(LocateImage(g, τ, c1)) =
parent(LocateImage(g, τ, c2)) = . . .
parent(LocateImage(g, τ, ck)) =: w

then return w
else return null.

4.3 Complexity

Algorithm LocateImage follows each pointer (child, g, parent) exactly once as is
illustrated by the example shown in Figures 6-9, and does only constant time operations
between pointer accesses. Hence it takes at most O(|X|) time. It operates in place and
does not require any extra scratch space. Algorithm Stabilizer, in the worst case,
can be a brute force algorithm that simply runs through all the elements of G instead
of maintaining efficient representations of R, CR and U . In this case, it takes no more
than O(|G||X|) time.

However, readers familiar with Sim’s method for representing permutation groups
[18] using so-called strong generating sets and Cayley graphs may appreciate the follow-
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1 2

3 4

{1, 2}

{1, 2, 3, 4} g = (1 2)(3 4)

Figure 7: LocateImage is called on the root of the assembly tree τ shown on the
left, for the permutation g shown on right. This permutation g fixes τ . The data
structure representing the tree consists of the child (blue, dashed) and parent (green,
solid) pointers and the data structure representing g - via its action on the leaf-label set
X - consists of g-pointers (red, dotted).

ing remarks. Instead of specifying the input of our problem as we have done, we may
assume that a Cayley graph is input, which uses a strong generating set of G. With this
input representation, the time complexity of our algorithms can be significantly further
optimized, the level of optimization depending on properties of the group G.

4.4 Example

The two examples shown in Figures 6-9 illustrate the algorithms LocateImage and
Fixes. Figure 7 for the first example shows the assembly tree τ and the associated data
structures, as well as the group element g. Figure 8 shows a run of LocateImage applied
to τ, g at root(τ). The algorithm establishes that the given permutation g fixes the given
assembly tree τ , whereby Fixes returns ‘true.’ The second example, in Figure 9, uses
the same assembly tree τ , but a different permutation g. The run of LocateImage in
Figure 10 is unsuccessful, whereby Fixes returns ‘false.’

5 Block systems and Fixed Assembly Trees

The formulas in Section 3 for the number of orbits of each size and for the orbit sizes or
pathway probabilities (Theorem 3 and Corollary 5) depend on the number of assembly
trees fixed by a group. A formula for the number of such fixed trees is the subject of
this and the next section.

Recall that an assembly tree τ is fixed by a group G acting on X if g(τ) = τ for
all g ∈ G. Two main results of this section (Corollary 12 and Procedure 13) provide a
recursive procedure for constructing all trees in TX that are fixed by G. This leads, in
the next section, to a generating function for the number of such fixed trees. The results

16
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1 2

3 4
{1, 2}

{1, 2, 3, 4}
LocateImage(3)

g({1, 2}) = {1, 2}

g(2) = 1; parent(g(2) = {1, 2})

g(1) = 2; parent(g(1) = {1, 2})

LocateImage(root)
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1 2

3 4
{1, 2}

{1, 2, 3, 4}g(root)=root; Fixes returns True

g(4) = 3; parent(g(4) = root)

g(3) = 4; parent(g(3) = root)

g({1, 2}) = {1, 2}; parent(g({1, 2}))=root

g(2) = 1; parent(g(2) = {1, 2})

g(1) = 2; parent(g(1) = {1, 2})

Figure 8: A successful run of LocateImage, where, for all vertices v in τ , the image
g(v) is established to be in the assembly-tree τ shown in Figure 7. On the right are
pointers traversed so far, in traversed order. On the left is the current recursion stack
of LocateImage calls (first call at the bottom), together with those vertices v (∈ X or
⊆ X) for which g(v) has been established to be in τ , showing that g is an isomorphism
between the two subtrees of τ rooted at v and at g(v), respectively.
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1 2

3 4

{1, 2}

{1, 2, 3, 4} g = (1 4)(2 3)

Figure 9: LocateImage is called on the root of the same tree τ as in Figure 7, but for
a different permutation g shown on right. In this case g does not fix τ .

i

ii

iii

iv

vi

vii

v

viii

ix
x

1
2

3 4
{1, 2}

{1, 2, 3, 4}
g(root)=null; Fixes returns False

parent(g(3))6= parent(g({1, 2}))

g(3) = 2; parent(g(3) = {1, 2})

g({1, 2}) = {1, 2}; parent(g({1, 2}))=root

g(2) = 3; parent(g(2))=root)

g(1) = 4; parent(g(1))=root)

Figure 10: An unsuccessful run of LocateImage. Since {1, 2}, 3 and 4 are the children
of the root, when LocateImage(root) is called, it checks if their images under g have
the same parent. So recursive calls are to LocateImage({1, 2}), to LocateImage(3),
and to LocateImage(4). LocateImage({1, 2}) returns the root of τ as a candidate for
g({1, 2}). But LocateImage(3) returns {1, 2} because the parent of g(3) = 2 is {1, 2}.
Hence LocateImage(root) returns null and Fixes returns ‘false.’
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in this section depend on a characterization (Theorem 9) of block systems arising from
a group acting on a set.

For a group G acting on set X, a block is a subset B ⊆ X such that for each g ∈ G,
either g(B) = B or g(B)∩B = ∅. A block system is a partition of X into blocks. A block
system B will be said to be compatible with the group action if g(B) ∈ B for all g ∈ G
and B ∈ B. A characterization of complete block systems (Theorem 9) is relevant to
the understanding of fixed assembly trees because of the following result. Let τ be any
assembly tree in TX . For any vertex v of τ , recall that v is identified with and labeled
by its set of descendent leaf-labels. Thus the set of labels of the children of the root is
a partition of X.

Lemma 8 Let G act on X, and let τ be an assembly tree for X that is fixed by G. If
U is the set of children of the root of τ , then U is a block system that is compatible with
the action of G in X.

Proof: For any v ∈ U , let τv be the rooted, labeled subtree of τ that consists of root v
and all its descendents. If τ is fixed by G, then g(τ) = τ for each g ∈ G. In other words,
g(τv) = τu for some u ∈ U . This implies that g(v) ∩ v = ∅ if u 6= v or g(v) ∩ v = v if
u = v. Hence U is block system that is compatible with the action of G on X.

The following notation will be used in this section. The set of orbits of G acting
on X will be denoted by O. For H ≤ G, let CH denote a set of (say left) coset
representatives of H in G. Note that |CH | = (G : H). For r ∈ G and Q ⊆ X, let
r(Q) := {r(q) : q ∈ Q}. A group G is said to act simply on X if the stabilizer of each
x in X is the trivial group. In this paper, a partition Π of a finite set S into k parts is
a set {π1, π2, · · · , πk} of disjoint subsets so that ∪k

i=1πi = S. The subsets πi are called
the parts of the partition Π. The order of the parts of a partition is insignificant. That
is, {{1, 3}, {2, 4}} and {{2, 4}, {1, 3}} are identical partitions of the set {1, 2, 3, 4}. We
nevertheless label the parts from 1 to k for convenience.

Theorem 9 Let us assume that G acts simply on X. Let Π = {π1, π2, . . . , πk} be a
partition of O into arbitrarily many parts, and let H = {H1, H2, . . . , Hk} be an arbitrary
set of distinct subgroups of G. For each i and each O ∈ πi, let Qi,O be any single orbit
of the simple action of Hi on O. (As G acts simply on X, so do its subgroups.)

Let Qi = ∪O∈πi
Qi,O. That is, Qi contains one orbit of the action of Hi on O, for each

O (often Qi is a proper subset of O). Let Q = {Q1, Q2, . . . , Qk}. (See Example 10 for an
illustration.) Let us denote by (Π,H,Q) the arrangement {(π1, H1, Q1), . . . , (πk, Hk, Qk)}
of each πi in Π with a corresponding subgroup Hi ≤ G in H, and Qi ∈ Q.

1. The collection

B(Π,H,Q) =

k⋃

i=1

⋃

r∈CHi

r(Qi),

of blocks r(Qi) is a compatible block system for G acting on X.
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2. Every compatible block system for G acting on X is of the above form for some
choice of Π, H, and Q.

3. Two such block systems B(Π,H,Q) and B(Π′,H′,Q′) are equal if and only if,
there is a permutation p of the set of blocks of Π′ so that for all i ≤ k, we have
π′

p(i) = πi, and for all i ≤ k, there exists a gi ∈ G so that H ′
p(i) = giHig

−1
i , and

Q′
p(i) = gi(Qi).

Example 10 Figure 11 illustrates the various orbits defined in Theorem 9. In this
example, the action of G on X consists of four orbits, Oa, Ob, Oc and Od. The partition
Π has two blocks, π1 = {Oa, Ob} and π2 = {Oc, Od}. The action of H1 on π1 creates
orbits on Oa and Ob. We choose one of each, (shown in the corners), for the roles of
Q1,Oa

and Q1,Ob
. Similarly, the action of H2 on π2 creates orbits on Oc and O′

d, and
we choose one of each, (shown again in the corners), for the roles of Q2,Oa

and Q2,Ob
.

Finally, Q1 = Q1,Oa
∪ Q1,Ob

, and Q2 = Q2,Oc
∪ Q2,Od

.
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Figure 11: The families of orbits described in Theorem 9
.

Proof: (of Theorem 9) In order to prove Statement (1), let H ∈ H and B = r(Q),
where Q = Qi for some i. We first show that B is a block. There is a subset A ⊆ X
containing at most one element from each G-orbit such that B = rH(A). If g(B)∩B 6= ∅,
then there are elements a, a′ ∈ A such that grh(a) = rh′(a′) for some g ∈ G and
h, h′ ∈ H . Thus a and a′ are in the same G-orbit, which implies that a = a′. Therefore,
grh(a) = rh′(a). Since G acts simply, this implies that grh = rh′, which in turn implies
that gr and r are in the same coset of H in G. Therefore g(B) = gr(Q) = r(Q) = B.
This proves, not only that B is a block, but that B(Π,H,Q) is a block system, because
B(Π,H,Q) is a partition of X into blocks. Moreover, if r(Q) ∈ B(Π,H,Q) and g ∈ G,
then by definition gr(Q) ∈ B(Π,H,Q), which shows that B(Π,H,Q) is a block system
compatible with G.
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In order to prove Statement (2), let us denote the set of orbits of G in its action on
X by {O1, O2, . . . , On}. We first show that any block B in the action of G on X is of
the form B = B1 ∪ B2 ∪ · · · ∪ Bn, where Bi is a single orbit of some subgroup H ≤ G
acting on Oi. Let Bi = B ∩Oi. Note that Bi = ∅ is a possibility, in which case we have
B = B1∪B2∪· · ·∪Bm, m ≤ n. Each Bi itself must be a block because, if g(Bi)∩Bi 6= ∅,
then g(B)∩B 6= ∅. However, B is a block, so g(B)∩B 6= ∅ implies that g(B) = B, and
thus g(Bi) = Bi.

Let Hi = {h ∈ G | h(Bi) = Bi}. We claim that H1 = H2 = · · · = Hm. To see this let
h ∈ Hi. Since B is a block, either h(B) ∩ B = ∅ or h(B) = B. However, h(B) ∩ B = ∅
is impossible because h(Bi) = Bi. Hence h(B) = B. Now Bj = B ∩ Oj implies, for
each j, that h(Bj) = Bj . Therefore hi ∈ Hj for all i, j. This verifies the claim, so let
H = H1 = H2 = · · · = Hm.

The proof that each block B is of the required form is complete if it can be shown
that H acts transitively on Bi for each i. To see this, let x, y ∈ Bi. Since Bi lies in a
single G-orbit, there is a g ∈ G such that g(x) = y. Since Bi has been shown to be a
block and g(Bi) ∩ Bi 6= ∅, it must be the case that g(Bi) = Bi. Therefore g ∈ Hi = H .

To complete the proof of Statement (2), let B be any compatible block system for G
acting on X. We have proved that if B ∈ B, then B = B1 ∪B2 ∪ · · · ∪Bm, where Bi is
a single orbit of some subgroup H ≤ G acting on Oi. Because of the compatibility, the
action of G on X induces an action of G on B. The orbits under this action provide a
partition Π of O, a part π ∈ Π consisting of all G-orbits acting on X contained in the
union of a single G-orbit acting on B. Consider any orbit W of B in this action. If B′

is another element of W , then there is an r ∈ G such that B′ = r(B). This shows that
the blocks in G(B) are of the desired form in Statement (1) of the theorem. Repeating
this argument for each part in the partition Π completes the proof of Statement (2).

To prove Statement (3), we first show that if Q ∈ Q is the union of H-orbits and
H ′(Q) = Q, where H, H ′ ∈ H, then H ′ = H . Restricting attention to just one orbit
of G in its action on X, the equality H ′(Q) = Q implies that H ′(a′) = H(a) for some
a, a′ in the same G-orbit acting on X. Let g ∈ G be such that a = g(a′) and hence
Hg(a′) = H ′(a′), which in turn implies that hg(a′) = a′ for some h ∈ H . Because G
acts simply, this implies that g = h−1 ∈ H , so H(a′) = H ′(a′), which again, by the
simplicity of the action, implies that H ′ = H .

Now let us assume that B(Π,H,Q) = B(Π′,H′,Q′). Clearly, Π = Π′. It is sufficient
to restrict our attention to just one of the parts in the partition Π = Π′, so we must
show that {r(Q) : r ∈ CH} = {r(Q′) : r ∈ CH′} if and only if H ′ = gHg−1, and
Q′ = g(Qi) for some g ∈ G. If H ′ = gHg−1, and Q′ = g(Q) for some g ∈ G, then
for any r ∈ G we have r(Q′) = rH ′(Q′) = (rgHg−1)g(Q) = rgH(Q). This shows
that {r(Q′) : r ∈ CH′} ⊆ {r(Q) : r ∈ CH}, and the opposite inclusion is similarly
shown. Conversely, assume that {r(Q) : r ∈ CH} = {r(Q′) : r ∈ CH′}. Since
Q′ ∈ {r(Q′) : r ∈ CH′}, we know that Q′ = r(Q) for some r ∈ CH ⊆ G. Now
(rHr−1)(Q′) = (rHr−1)(r(Q)) = rH(Q) = r(Q) = Q′. By the uniqueness result shown
in the preceding paragraph, we get H ′ = rHr−1.

Example 11 Klein 4-group acting on T4 (continued).
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Continuing the example from the previous section with G = Z2 ⊕ Z2 acting simply
on X = {1, 2, 3, 4}, let K = K1 = {(1)(2)(3)(4), (1 2)(3 4)} and K0 the trivial subgroup.
There are 11 blocks in the action of K on X which are given below:

{1, 2, 3, 4}, {1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3}, {1}, {2}, {3}, {4}.

The seven block systems for the action of K on X can be found using Theorem 9. In
what follows, {1, 2}|{3, 4} denotes the orbit {1, 2}, {3, 4} partitioned into the two parts
{1, 2} and {3, 4}, whereas {1, 2}, {3, 4} denotes that same orbit partitioned the trivial
way, into one part. Note that B ( {1, 2}|{3, 4}, {K0, K} , {2}|{3, 4} ), for example, is
not included in the list below. This is because, according to Statement (3) in Theorem 9,

B ( {1, 2}|{3, 4}, {K0, K} , {2}|{3, 4} ) =

B ( {1, 2}|{3, 4}, {K0, K} , {1}|{3, 4} ).

Namely, for g = (1 2)(3 4), we have {2} = g({1}) and K0 = gK0g
−1.

B ( {1, 2}, {3, 4}, {K}, {1, 2, 3, 4} ) = (1 2 3 4)

B ( {1, 2}, {3, 4}, {K0}, {1, 3} ) = (1 3)(2 4)

B ({1, 2}, {3, 4}, {K0}, {1, 4} ) = (1 4)(2 3)

B ( {1, 2}|{3, 4}, {K, K}, {1, 2}, {3, 4} ) = (1 2)(3 4)

B ({1, 2}|{3, 4}, {K, K0}, {1, 2}, {3} ) = (1 2)(3)(4)

B ({1, 2}|{3, 4}, {K0, K}, {1}, {3, 4} ) = (1)(2)(3 4)

B ({1, 2}|{3, 4}, {K0, K0}, {1}, {2} ) = (1)(2)(3)(4)

Let τ ∈ TX be a tree fixed by G in its action on TX . If U denotes the set of children
of the root of τ , recall that Lemma 8 states that the set U of labels is a block system.
Recall that the label of a vertex is the set of labels of its leaf descendents, and also the
label of a vertex is the union of the labels of its children. According to Theorem 9, any
block system is of the form

B(Π,H,Q) =

k⋃

i=1

⋃

r∈CHi

r(Qi).

We will use the notation τrQ to denote the subtree τu, u ∈ U, u = r(Q), rooted at u.
Theorem 9 leads to the characterization of assembly trees fixed by given a group G as
stated in Corollary 12 below.

Corollary 12 Let us assume that G acts simply on X and that τ ∈ TX. Let U be the
set of children of the root of τ and, for each u ∈ U , let τu be the rooted, labeled subtree of
τ that consists of root u and all its descendents. Then, with notation as in Theorem 9,
the tree τ is fixed by G if and only if, for some Π, H and Q, the following two conditions
are satisfied.
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1. The equality U = B(Π,H,Q) holds. In particular, for each Q ∈ Q and g ∈ G,
there is a subtree τQ and a subtree τgQ.

2. For every Q ∈ Q and every g ∈ G, the equality τgQ = g(τQ) holds.

Proof: Let us assume that τ is fixed by G. Condition (1) follows immediately from
Lemma 8 and Theorem 9. Concerning Condition (2), for any g ∈ G, the set of leaves of
g(τQ) is g(Q). Hence for τ to be fixed by G it is necessary that g(τQ) = τgQ.

Conversely, let us assume that Conditions (1) and (2) hold. For any g ∈ G we
must show that g(τ) = τ . By Condition (1), it is sufficient to show that g acting on
τ permutes the set of subtrees in such a manner that g(τrQ) = τgrQ for every H ∈ H,
Q the corresponding element of Q, and every r ∈ CH . However, by Condition (2),
g(τrQ) = gr(τQ) = τgrQ.

Theorem 14 below states that the following recursive procedure constructs any as-
sembly tree τ ∈ TX fixed by G. This will be used to prove Theorem 17 in the next
section.

Procedure 13 Recursive construction of any assembly tree fixed by a group G:

(1) Partition the set O of G-orbits of X: Π = {π1, π2, . . . , πk}. Note that the parts of
Π are labeled 1, 2, · · · , k in some arbitrary way.

(2) For each i = 1, 2, . . . , k, choose a subgroup Hi ≤ G. (If Π has only one part then
Hi = G is not allowed.)

(3) For each i, choose a single orbit of Hi acting on each of the G-orbits in πi, and let
Qi be the union of these Hi-orbits.

(4) Recursively, let τQi
be any rooted tree whose leaves are labeled by Qi and which

is fixed by Hi.

(5) Let Si = { r(τQi
) | r ∈ CHi

} and S = ∪k
i=1 Si.

(6) Let τ be the rooted tree whose children are roots of the trees in S.

Theorem 14 The set of assembly trees constructed by Procedure 13 is the set of assem-
bly trees fixed by the group G.

Proof: In the notation of Theorem 9, Steps (1), (2), and (3) are choosing (Π,H,Q).
Steps (4), (5), and (6) are ensuring that U = B(Π,H,Q). Note that the restriction in
Step (2) is because otherwise the root of the resulting tree in Step (6) would have only
one child. Note also that in Step (5), Si does not depend on the particular set of coset
representatives. This follows directly from Step (4).

It is now sufficient to show the following. For any assembly tree τ satisfying U =
B(Π,H,Q) for some (Π,H,Q), Condition (2) in Corollary 12 holds if and only if τ is
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constructed by Procedure 13. To show that any assembly tree τ constructed by Proce-
dure 13 satisfies Condition (2), note that Step (4) implies that, if Q ∈ Q corresponds
to H ∈ H, then H(Q) = Q and hence h(τQ) = τhQ = τQ for all h ∈ H . For g ∈ G, if
g = rh, where h ∈ H , then g(τQ) = rh(τQ) = r(τhQ) = r(τQ) = τrQ, the last equality
from Step (5). Again, because H(Q) = Q, we have g(τQ) = τrQ = τrhQ = τgQ.

Conversely, if τ satisfies Condition (2) in Corollary 12, then consider the trees τQi
i =

1, 2, . . . , k. These are trees whose leaves are labeled by Qi. in Step (4) of Procedure 13.
Moreover, by Condition (2) we have h(τQi

) = τhQi
= τQi

for all h ∈ Hi, so τQi
is fixed by

Hi. By Step (5) of Procedure 13 and Condition (2) of Corollary 12 we have r(τQi
) = τrQi

for all r ∈ CHi
. Therefore the tree τ is constructed by Procedure 13.

Remark 15 Enforcing uniqueness in the construction.

The construction in Procedure 13 is not unique, in that it may produce the same fixed
assembly tree multiple times depending on the choices in Steps 2 and 3. Condition
(3) in Theorem 9 shows that we may enforce uniqueness if we make the following two
restrictions.

(a) If we choose (Π,H,Q) = {(π1, H1, Q1), . . . , (πk, Hk, Qk)} in Steps 1 and 2 of
the procedure while constructing a tree τ , and if we also have (Π,H′,Q′) =
{(π1, H

′
1, Q

′
1), . . . , (πk, H

′
k, Q

′
k)} during the construction of another tree τ ′, then

to ensure that τ 6= τ ′ we need to ensure that for at least one i, the group H ′
i

should not be conjugate to Hi in G.

(b) Consider the construction of two trees τ and τ ′ with corresponding (Π,H,Q) and
(Π,H′,Q′) such that for each i, the subgroup Hi is a conjugate of the subgroup
H ′

i. Further assume that in Step (3) for the tree τ the element gi ∈ Hi is such that
giHig

−1
i = H ′

i. Then while constructing tree τ ′, we need to ensure that there is at
least one i such that Q′

i 6= gi(Qi). (Note that for a given index i, there may well
be several elements gi ∈ G so that giHig

−1
i = H ′

i holds, and all those are subject
to this restriction.)

Example 16 Klein 4-group acting on T4 (continued).

With G = Z2 ⊕ Z2 acting on X = {1, 2, 3, 4}, consider the assembly trees τ fixed by
the subgroup K = {(1)(2)(3)(4), (1 2)(3 4)}. There are exactly six such trees, those in
the orbits A, B, C, D, E of Figure 6. These correspond (not in corresponding order) to
the block systems in Example 11. Because of the restriction in Step (2) of Procedure 13,
the first block system in the list in Example 11 is ignored.

5.1 When the action of G on X is not simple

Let us assume that G acts on X, but not necessarily simply. For q ∈ X, let Sq denote
the stabilizer of q in G. For a subset Q ⊆ X, let

SQ =
⋃

q∈Q

Sq.
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If G acts simply on X, then the stabilizer of any x ∈ X is the trivial subgroup. Therefore,
in this case, it is clear that SQ ⊂ H for any Q ⊆ X and H ≤ G. In the general case,
when G acts not necessarily simply on X, let us call a pair (H, Q) viable if

SQ ⊆ H.

If only viable pairs (Hi, Qi) are allowed in the hypothesis of Theorem 9, then the the-
orem is valid in the general, not necessarily simple, case. Since this general version of
Theorem 9 and associated analogs of Procedure 13 and Theorem 14 are not needed in
subsequent sections, and the proofs are relatively straightforward extensions, we omit
them.

6 Enumerating Fixed Assembly Trees

Let us assume in this section that G acts simply on each of an infinite sequence
X1, X2, . . . of sets where, by formula (1 ) in Section 2, we have |Xn| = n|G|. In other
words, n is the number of orbits of G in its action on Xn. Denote by tn(G) the number
of trees in Tn := TXn

that are fixed by G. In this section we provide a formula for the
exponential generating function

fG(x) :=
∑

n≥1

tn(G)
xn

n!

for the sequence {tn(G)}. If G is the trivial group of order one, then let us denote this
generating function simply by f(x). This is the generating function for the total number
of rooted, labeled trees with n leaves in which every non-leaf vertex has at least two
children. For H ≤ G, let

f̂H(x) =
1

(G : H)
fH ((G : H)x) .

Theorem 17 The generating function fG(x) satisfies the following functional equations:

1 − x + 2f(x) = exp (f(x)),

and for |G| > 1,

1 + 2fG(x) = exp

(
∑

H≤G

f̂H(x)

)
.

Proof: The first formula is proved in [21], page 13. For |G| > 1, we use the standard
exponential and the product formulas for generating functions.

The proof of the second formula uses two well known results from the theory of expo-
nential generating functions, the “product formula” and the “exponential formula”. In
Procedure 13, give Steps (3) and (4) the name putting an Hi-structure on πi. According
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to Theorem 14, the number of trees tn(G) fixed by G equals the number of ways to
partition the set of orbits of G acting on Xn and to place an H-structure on each part
in the partition, for some subgroup H ≤ G, keeping the uniqueness Remark 15 in mind.

In Step (3) of Procedure 13, since G acts simply and the number of Hi-orbits in
one G-orbit is |G|/|Hi| = (G : Hi), the number of possible choices for Qi (the union of
these single Hi-orbits) is (G : H)m. Hence, in accordance with Step (4) of Procedure 13,
the generating function for the number of ways to place an H-structure is basically
fH((G : H)x).

However, this must be altered in accordance with the uniqueness requirements in
Remark 15. Let N denote a set consisting of one representative of each conjugacy
class in the set of subgroups of G. By Statement (a) in Remark 15, only subgroups
in N are considered. Let N(H) := {g ∈ G | gHg−1 = H} denote the normalizer of
H in G. By Statement (b), there has to be an index i so that g(Qi) 6= Q′

i. However,
g(Qi) = g′(Qi) will occur for every i if and only if g and g′ are in the same coset of H in
G. Therefore, the generating function for the number of ways to place an H-structure
is 1

(N(H):H)
fH((G : H)x).

The exponential formula states that the generating function gH(x) =
∑

n≥0 an
xn

n!
for

the number of ways an to partition the set of G-orbits acting on Xn and, on each part
π in the partition, place an H-structure (same H) is

gH(x) := exp
(
f̂H(x)

)
.

Here we assume that a0 = 1.
The generating function for the number of ways to partition the set of orbits, i.e.,

choose Π = (π1, π2, . . . , πk) and, on each part of the partition, place an H-structure, one
H from each conjugacy class in N is

∏

H∈N

gH(x) =
∏

H∈N

exp

(
1

(N(H) : H)
fH((G : H)x)

)

= exp

(
∑

H∈N

1

(N(H) : H)
fH((G : H)x)

)
.

Note that we have not taken the restriction in Step (2) of Procedure 13 into considera-
tion. Taking the partition of the orbit set into just one part and placing on that part a
G-structure results in counting the number of fixed trees a second time. Also since the
constant term in

∏
H∈N

gH(x) is 1,

1 + 2 fG(x) = exp

(
∑

H∈N

1

(N(H) : H)
fH((G : H)x)

)

= exp

(
∑

H≤G

1

(G : H)
fH((G : H)x)

)
.
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Here the last equality holds because fH(x) depends only the conjugacy class of H in G
and

1

(N(H) : H)

/ 1

(G : H)
=

(G : H)

(N(H) : H)
= (G : N(H)) = |N|.

Example 18 Klein 4-group acting on T4 (continued).

Consider G = Z2 ⊕ Z2 acting on Xn. Recall that |Xn| = 4n, the integer n being the
number of G-orbits. In this case N = {K0, K1, K2, K3, G}, where K0 is the trivial group
and

K1 = { (1)(2)(3)(4), (1 2)(3 4) },

K2 = { (1)(2)(3)(4), (1 3)(2 4) },

K3 = { (1)(2)(3)(4), (1 4)(2 3) }.

The functional equations in the Statement of Theorem 17 are

1 − x + 2f(x) = exp (f(x))

1 + 2fKi
(x) = exp

(
1

2
f(2x) + fKi

(x)

)
for i = 1, 2, 3, and

1 + 2fG(x) = exp

(
1

4
f(4x) +

1

2
fK1

(2x) +
1

2
fK2

(2x) +
1

2
fK3

(2x) + fG(x)

)
.

Using these equations and MAPLE software, the coefficients of the respective generating
functions provide the following first few values for the number of fixed assembly trees.
For the first entry t1(G) = 4 for the group G, the four fixed trees are shown in Figure 6
A, B, C, D. For trees with eight leaves there are t2(G) = 104 assembly trees fixed by
G = Z2 ⊕ Z2, and so on.

tn(K0) : 1, 1, 4, 26, 236, 2752

tn(Ki) : 1, 6, 72, 1312, 32128, 989696

tn(G) : 4, 104, 4896, 341120, 31945728, 3790876672.

Theorem 17 provides the generating function for the numbers tn(H) of fixed assembly
trees in the action of any subgroup H ≤ G on Xn. What is required for Problem (i) de-
scribed in Sections 2 and 3 are the numbers tn(H) of assembly trees that are fixed by H ,
but by no other elements of G. In Example 16, for G = Z2⊕Z2 acting on X = {1, 2, 3, 4},
there are six trees that are fixed by the subgroup K = { (1)(2)(3)(4), (1 2)(3 4) }. How-
ever, of these six, four (A, B, C, and D in Figure 6) are also fixed by G. Therefore
there are only two assembly trees fixed by K and no other elements of G (these are E,
and F in Figure 6). In general, as shown Theorem 2, Möbius inversion [23] can be used
to calculate the values of tX(H) from the values of tX(H).
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7 The Icosahedral Group and Viral Interpretation

For completeness, the results of the previous sections are applied to the icosahedral
group and interpreted in the context of the T = 1 viral capsid.

An isometry of 3-space is a bijective transformation that preserves length, and an
isometry is called direct if it is orientation preserving. Rotations, for example, are direct,
while reflections are not. A symmetry of a polyhedron is an isometry that keeps the
polyhedron, as a whole, fixed, and a direct symmetry is similarly defined. The icosahedral
group is the group of direct symmetries of the icosahedron. It is a group of order 60
denoted G60.

As mentioned earlier, the viral capsid is modeled by a polyhedron P with icosahedral
symmetry, whose set X of facets represent the protein monomers. The icosahedral
group, acts on P and hence on the set X. It follows from the quasi-equivalence theory
of the capsid structure that G60 acts simply on X. Formula (1 ) of Section 2 gives
|X| := |Xn| = 60n, where n is the number of orbits. Not every n is possible for a viral
capsid; n must be a T -number as defined in the introduction. Before the number of
orbits of each size for the action of G60 on the set Tn := TXn

of assembly trees can be
determined, basic information about the icosahedral group is needed.

The group G60 consists of:

• the identity,

• 15 rotations of order 2 about axes that pass through the midpoints of pairs of
diametrically opposite edges of P ,

• 20 rotations of order 3 about axes that pass through the centers of diametrically
opposite triangular faces, and

• 24 rotations of order 5 about axes that pass through diametrically opposite ver-
tices.

There are 59 subgroups of G60 that play a crucial role in the theory. Besides the two
trivial subgroups, they are the following:

• 15 subgroups of order 2, each generated by one of the rotations of order 2,

• 10 subgroups of order 3, each generated by one of the rotations of order 3,

• 5 subgroups of order 4, each generated by rotations of order 2 about perpendicular
axes,

• 6 subgroups of order 5, each generated by one of the rotations of order 5,

• 10 subgroups of order 6, each generated by a rotation of order 3 about an axis L
and a rotation of order 2 that reverses L,
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• 6 subgroups of order 10, each generated by a rotation of order 5 about an axis L
and a rotation of order 2 that reverses L,

• 5 subgroups of order 12, each the symmetry group of a regular tetrahedron in-
scribed in P .

From the above geometric description of the subgroups, it follows that all subgroups of a
given order are conjugate in the group G60. Representatives of the conjugacy classes of
the subgroups of the icosahedral group are denoted by G0, G2, G3, G5, G6, G10, G12, G60,
where the subscript is the order of the group. The set of subgroups of G60 forms a
lattice, ordered by inclusion. A partial Hasse diagram for this lattice L is shown in
Figure 12. The number on the edge joining Gi (below) and Gj (above) indicate the
number of distinct subgroups of order i contained in each subgroup of order j. The
number in parentheses on the edge joining Gi (below) and Gj (above) indicate the
number of distinct subgroups of order j containing each subgroup of order i. It is well-
known that any finite partially ordered set P admits a Möbius function µ : P ×P → Z.
The Möbius function of L is shown in Table 1. The entry in the table corresponding to
the row labeled Gi and column Gj is µ(Gi, Gj).
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Figure 12: Partial Hasse diagram for the lattice of subgroups of the icosahedral group.

7.1 Interpretation for T = 1 capsids

For |X| = 60, i.e., for the T = 1 polyhedral case, using Theorem 17 and MAPLE
software, the generating functions fGi

(x) were computed, and hence their coefficients
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Table 1: The values of the Möbius function of the subgroup lattice of G60.

t60/i(Gi) which count assembly trees that are fixed by any copy of Gi were also com-
puted. Note that since |X| = 60, the number of orbits of Gi in its action on X is
60/i. Substituting these values into Theorem 2 and using the Möbius Table 1 yields
the following numerical values for t60/i(Gi), the number of assembly trees over X with
|X| = 60 that are fixed by Gi but by no other elements of G60. In other words, these
are the numbers of trees whose stabilizer in G60 is exactly Gi.

t60(G1) = 1924465510132437394720184730922187571120346754532

2366329965115755432139023628289410324670840066578537680

t30(G2) = 1670856367100496379411587456529324583988755126499875584

t20(G3) = 10087157294451731428720995944759704

t15(G4) = 10041342673530270014535171213312

t12(G5) = 20540071766413107840

t10(G6) = 61346927354448105268

t6(G10) = 223503950260

t5(G12) = 16865654580

t1(G60) = 204

Substituting the above numbers into Theorem 3 and Corollary 5, we arrive at the
number of assembly pathways of each possible probability (symmetry factor). More
precisely, this probability must be of the form m/|T |, where m divides evenly into 60
and |T | is the total number of assembly trees. In this case the number of assembly trees
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with probability m/|T | is

1

m
(# subgroups of order 60/m in G60) ti(G60/i).

The exact numbers appear in the table below.

204 assembly pathways with probability 1/|T |
16865654580 assembly pathways with probability 5/|T |
223503950260 assembly pathways of probability 6/|T |
61346927354448105268 assembly pathways of probability 10/|T |
10270035883206553920 assembly pathways of probability 12/|T |
3347114224510090004845057071104 assembly pathways of of probability 15/|T |
5043578647225865714360497972379852 assembly pathways of probability 20/|T |
8354281835502481897057937282646622

91994377563249937792 assembly pathways of probability 30/|T |

320744251688739565786697455153697928
520057792422039438832751929257202
317060471490172077847334442975628 assembly pathways of probability 60/|T |

It is worth comparing the first and last elements of the above list. While the in-
dividual pathways of corresponding to a stabilizer of type G1 have a symmetry factor
that is 60 times more than those that correspond to type G60, there are about 1099

times more of the former type of pathway. That is, the probability that a randomly
selected pathway corresponds to a stabilizer of type G1 is 1099 times higher than the
probability that a randomly selected pathway corresponds to the stabilizer of type G60.
In general, the probability that a randomly selected pathway has a stabilizer of type Gi

is very sensitive to changes in i. The higher i is, the lower this probability is. The rate
of change is much steeper than the rate of change in i.

8 Conclusion and Open Problems

We have developed an algorithmic and combinatorial approach to a problem arising in
the modeling of viral assembly. Our results illustrate, not only that problems arising
from structural biology can be of independent mathematical interest, but also that
mathematical methods have a direct application in structural biology.

More specifically, we have developed techniques to analyze the probability of a capsid
forming along a given assembly pathway. One remaining issue is how to extend these
techniques to finding the probability of valid assembly pathways as defined in Section 1.
Valid assembly trees can be characterized combinatorially, using generalized notions of
connectivity of the graph of the polyhedron that models the capsid, i.e. the graph whose
edges are the edges of the polyhedron [19]. Combining such graph theoretic restrictions
with our techniques will likely require new ingredients. A second important issue is
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how to extend our techniques to nucleation in viral shell assembly. Mathematically [3],
the problem is to estimate the proportion of valid assembly trees that have a subtree
whose leaves form a specific subset of facets, for example a trimer or a pentamer, in the
underlying polyhedron. Disrupting probable nucleations - for example by altering the
interacting monomer residues that drive the nucleation - is an effective way to arrest
assembly of the viral capsid and thus in controlling infectious diseases.

In addition to the above extensions of the theory, there is scope to tighten some
results of the paper. For example, a finer complexity analysis for Algorithm Stabilizer

could be based on using Sim’s algorithm, strong generating sets, and the Cayley graph
for G as input.

The result of [3] only tells us that the symmetry factor in the probability of an
assembly pathway is at least the depth of the pathway. We in fact conjecture that
the symmetry factor increases with the depth of the pathway. Proving this conjecture
would, as discussed at the end of Section 1, strengthen the motivation for studying the
symmetry factor.

A study of unlabeled trees that are g-unfixable may lead to relevant related results.
Call a tree g-unfixable if there is no leaf-labeling so that the resulting labeled tree is fixed
by the permutation g, and let us say that a tree is G-unfixable if it is g-unfixable for
every nontrivial element of the group G. These properties are interesting for at least two
reasons. First, they clarify the minimum quantifiable information in a labeled tree that
is necessary to decide if it is fixed by a group element g: if the underlying unlabeled tree
is g-unfixable, then the information in the labeling is unnecessary to make this decision.
This may lead to efficient algorithms that use properties of the automorphism group of
the tree to help in deciding whether a given labeled tree is fixed by the given group.
Second, in the language of formal logic, these properties are likely to be monadic second
order expressible [7, 25], permitting the application of limit laws for the asymptotic
probabilities of finite structures satisfying such properties.
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[3] M. Bóna and M. Sitharam Influence of symmetry on probabilities of icosahedral
viral assembly pathways, Computational and Mathematical Methods in Medicine:
Special issue on Mathematical Virology, Stockley and Twarock Eds, 2008.

[4] B. Berger, P. Shor, J. King, D. Muir, R. Schwartz and L. Tucker-Kellogg. Local
rule-based theory of virus shell assembly, Proc. Natl. Acad. Sci. USA, 91:7732–7736,
1994.

32



[5] Gunnar Brinkmann and Andreas Dress. A constructive enumeration of fullerenes,
Journal of Algorithms., 23:345–358, 1997.

[6] D. Caspar and A. Klug. Physical principles in the construction of regular viruses,
Cold Spring Harbor Symp Quant Biol, 27:1–24, 1962.

[7] K.J. Compton. A logical approach to asymptotic combinatorics II: monadic second-
order properties, J. Comb. Theory Ser. A 50(1):110–131, 1989.

[8] W.H.E. Day. Optimal algorithms for comparing trees with labeled leaves, Journal
of Classification, 2(1):7–26, 1985.

[9] M. Deza and M. Dutour. Zigzag structures of simple two-faced polyhedra, Combin.
Probab. Comput., 14(1-2):31–57, 2005.

[10] M. Deza, M. Dutour, and P. W. Fowler. Zigzags, railroads, and knots in fullerenes,
Chem. Inf. Comp. Sci., 44:1282–1293, 2004.

[11] P. Gawron, V. V. Nekrashevich, and V. I. Sushchanskii, Conjugacy classes of the
automorphism group of a tree Mathematical Notes 65(6):787-790, 1999.

[12] Jack E. Graver, Brigitte Servatius, and Herman Servatius. Combinatorial Rigidity,
Graduate Studies in Math., AMS, 1993.

[13] J. E. Johnson and J. A. Speir. Quasi-equivalent viruses: a paradigm for protein
assemblies, J. Mol. Biol., 269:665–675, 1997.

[14] M.H. Klin. On the number of graphs for which a given permutation group is the
automorphism group (Russian), English translation: Kibernetika 5:892-870, 1973.

[15] C. J. Marzec and L. A. Day. Pattern formation in icosahedral virus capsids: the
papova viruses and nudaurelia capensis β virus, Biophys, 65:2559–2577, 1993.

[16] D. Rapaport, J. Johnson and J. Skolnick. Supramolecular self-assembly: molecular
dynamics modeling of polyhedral shell formation, Comp Physics Comm, 1998.

[17] V. S . Reddy, H. A. Giesing, R. T. Morton, A. Kumar, C.B. Post, C. L. Brooks, and
J. E. Johnson. Energetics of quasiequivalence: computational analysis of protein-
protein interactions in icosahedral viruses. Biophys, 74:546–558, 1998.
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