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Abstract. We find surprisingly simple formulas for the limiting proba-
bility that the rank of a randomly selected vertex in a randomly selected
phylogenetic tree or generalized phylogenetic tree is a given integer.

1. Introduction

Various parameters of many models of random rooted trees are fairly well
understood if they relate to a near-root part of the tree or to global tree
structure. The first group includes, for instance, the numbers of vertices
at given distances from the root, the immediate progeny sizes for vertices
near the top, and so on. See Flajolet and Sedgewick [8] for a comprehensive
treatment of these results. The tree height and width are parameters of
global nature, see Kolchin [12], Devroye [5], Mahmoud and Pittel [13], Pittel
[16], Kesten and Pittel [11], Pittel [17], for instance. In recent years there
has been a growing interest in analysis of the random tree fringe, i. e. the
tree part close to the leaves, see Aldous [1], Mahmoud and Ward [14], [15],
Bóna [2], Bóna and Pittel [4], Janson and Holmgren [9, 10] and Devroye
and Janson [6]. These articles either focused on unlabeled trees, or trees in
which every vertex was labeled.

In this paper, we study another natural class of trees, those in which
only the leaves are labeled. Some trees of this kind have been studied from
different aspects. See [3] for a result of the present author and Philip Flajolet
on the subject, or Chapter 5 of [18] for enumerative results for two tree
varieties of this class.

First, we will consider phylogenetic trees, that is, rooted non-plane trees
whose vertices are bijectively labeled with the elements of the set [n] =
{1, 2, · · · , n}, and in which each non-leaf vertex has exactly two children.
See Figure 1 for the set of all three phylogenetic trees on label set [3].

We define the rank of a vertex as the distance of that vertex from the its
closest descendent leaf, so leaves have rank 0, neighbors of leaves have rank
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Figure 1. The three phylogenetic trees on leaf set [3].

1, and so on. Then for each fixed i, we are able to prove that as n goes
to infinity, the probability that a random vertex of a random phylogenetic
tree on label set [n] is of rank i converges to a limit P2,i, and we are able
to compute that limit. The obtained numerical values will be much simpler
than the numerical values obtained for other tree varieties, for instance in

[2] or [4]. Indeed, we will prove that P2,i = 21−2i − 21−2i+1
. This will follow

from the even simpler formula 21−2i for the probability that a random vertex
in a random phylogenetic tree is of rank at least i.

Then we consider the same questions for generalized phylogenetic trees.
In such trees, every non-leaf vertex has exactly k children, for some fixed
positive integer k ≥ 2, and the rest of the definition is unchanged. The proofs
will be somewhat more involved than those for the special case of k = 2,
since we will not have explicit, closed forms for our generating functions,
essentially because quadratic equations are easier to handle than algebraic
equations of a higher degree. Nevertheless, using the Lagrange inversion
formula and some observations, we will be able to prove results that are just
as precise as those we obtain for the case of k = 2.

These results are notable for several reasons. First, the obtained formulas
are surprisingly simply. Second, the numbers Pk,i decrease very fast, in a
doubly exponential way. To compare, note that in [4], the corresponding
numbers for binary search trees are shown to decrease in a simply expo-
nential way. Third, the obtained explicit formulas make it routine to prove
that the sequence Pk,i is log-concave for any fixed i, a fact that is plausible
to conjecture, but probably hopeless to prove, for many other tree varieties.
Fourth, in the last section we will show an example to illustrate that even for
phylogenetic trees, a result that is numerically so simple cannot be expected.

We end the paper by a few open questions asking for combinatorial proofs
of some of the mentioned phenomena.
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2. Warming up: the case of k = 2

In this section, we study the special case of k = 2. The results of this
section are all special cases of the more general results of the next section.
However, our methods in this section are much more explicit, so readers
who want to see an example of a more direct case should read this section
first, while readers who prefer the ”big picture” may skip ahead to the next
section, then return to this one for examples.

2.1. Preliminaries. Let T (x) be the exponential generating function for
the numbers tn of all phylogenetic trees whose leaves are bijectively labeled
with the elements of [n], with t0 = 0. Removing the root of such a tree, we
either get the empty set, or a pair of phylogenetic trees so that the union
of the set of labels of their leaves is [n]. Therefore, the product formula of
exponential generating functions (see for instance Chapter 5 of [18]) shows
that T (x) = x+T 2(x)/2. Solving this quadratic equation for T (x) and using
the initial condition T (0) = 0, we get that T (x) = 1 −

√
1− 2x, so t1 = 1,

and tn = (2n− 3)!! = 1 · 3 · 5 · · · · (2n− 3) if n ≥ 2.
As a practical matter, it turns out to be advantageous to count vertices

that are at least of a given rank. (For most other tree varieties, this is not
the case.) Let mi(n) be the total number of vertices of rank at least i in all
phylogenetic trees on leaf set [n]. Let Mi(x) =

∑
n≥1 mi

xn

n! . As each such

tree has a total of 2n − 1 vertices, it follows that m0(n) = (2n − 1)!! for
n ≥ 1, so M0(x) =

∑
n≥1(2n− 1)!!x

n

n! = 1/
√

1− 2x− 1.
We will need the following straightforward, but important, fact about

M0(x). Let [xn]f(x) denote the coefficient of xn in the power series f(x).

Proposition 2.1. For all positive integers q, the equality

(1) lim
n→∞

[xn]xqM0(x)

[xn]M0(x)
=

1

2q

holds.

Proof. On the one hand, [xn]M0(x) = (2n−1)!!
n! . On the other hand,

xqM0(x) =
∑
n≥1

(2n− 1)!!
xn+q

n!
=
∑
n≥1

(2n− 2q − 1)!!
xn

(n− q)!
.

So the fraction on the left-hand side of (1) is equal to

(2n− 2q − 1)!!

(n− q)!
· n!

(2n− 1)!!
=

n(n− 1) · · · (n− q + 1)

(2n− 1)(2n− 3) · · · (2n− 2q + 1)
,

and our claim is proved. �

In order to compute Mi(x) for larger values of i, we need some more
notation. Let ri(n) be the number of phylogenetic trees on leaf set [n] in
which the root is of rank at least i. Let Ri(x) =

∑
n≥1 ri

xn

n! . For instance,

r0(n) = (2n− 3)!! = tn for all n, so R0(x) = T (x) = 1−
√

1− 2x. Similarly,
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r1(n) = tn if n ≥ 2, and r1(1) = 0 (since in the one-vertex tree, the root is
of rank zero), leading to the formula R1(x) = T (x)− x = 1− x−

√
1− 2x.

Lemma 2.2. For i ≥ 0, the equality

(2) Mi(x) = Mi(x) · T (x) + Ri(x)

holds.

Proof. Note that mi(n) is the number of ordered pairs (v, T ), where T is
a phylogenetic tree on leaf set [n], and v is a vertex of rank at least i in
T . If v is not the root of T , then removing the root of T , we get two
subtrees, one with the marked vertex v, and one without marked vertices.
By the product formula of exponential generating functions, such pairs are
counted by the generating function Mi(x)T (x), which is the product of the
generating functions of the two components. If v is the root of T , then v
contributes one to the count of vertices of rank at least i. This happens
ri(n) times, since it happens once for each tree counted by ri(n). �

Expressing Mi(x) from (2), we get that for all i ≥ 0, the equality

(3) Mi(x) =
Ri(x)

1− T (x)
=

Ri(x)√
1− 2x

holds.
For instance,

M1(x) =
R1(x)√
1− 2x

=
1− x−

√
1− 2x√

1− 2x
=

1− x√
1− 2x

− 1.

From this formula, it is easy to compute that m1(n) = (n − 1) · (2n − 3)!!.
We have of course known this anyway, since each tree counted by m1(n) has
2n− 1 vertices, n of which are leaves.

The generating functions Ri(x) are easy to compute for higher i as well.

Proposition 2.3. For all i ≥ 1, the recurrence relation

(4) Ri(x) =
R2

i−1(x)

2

holds.

Proof. The root of a phylogenetic tree is of rank at least i if and only if
both children of that root are of rank at least i− 1. Our claim is therefore
an immediate consequence of the product formula, noting that our trees are
non-plane. �

Corollary 2.4. For all i ≥ 0, the equality

(5) Ri(x) =
T (x)2i

22i−1
=

(1−
√

1− 2x)2i

22i−1

holds.
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Proof. Straightforward by induction using Proposition 2.3 and the fact that
T (x) = R0(x). �

Corollary 2.5. For all i ≥ 0, the equality

(6) Mi(x) =
1

22i−1
· (1−

√
1− 2x)2i

√
1− 2x

holds.

Proof. Immediate by comparing the results of Lemma 2.2 and Corollary
2.4. �

Now we have reached the surprising part of this section. In the next
lemma, we will prove that the asymptotic behavior of the coefficients of
the second term of the right-hand side of (6) is very similar to that of the
coefficients of M0(x). In fact, the limit of the ratios of these coefficient
sequences is 1.

Lemma 2.6. For all i ≥ 1, we have

lim
n→∞

mi(n)

m0(n)
= lim

n→∞

mi(n)

(2n− 1)!!
=

1

22i−1
.

That is, for all i ≥ 1, the probability that a randomly selected vertex of a

randomly selected phylogenetic tree is of rank at least i converges to 21−2i as
n goes to infinity.

Proof. Let A(x) = (1−
√

1−2x)2
i

√
1−2x

. We will split A(x) into the sum of three

expressions, and we will show that two of those three components will have
a negligible contribution to [xn]A(x).

Let us expand the numerator of A(x) by the binomial theorem. We get a

sum of terms of the form
(

2i

j

)
(
√

1− 2x)j , where j goes from 0 to 2i. When we

divide this sum by the denominator
√

1− 2x, the odd powers of
√

1− 2x in
the numerator will become even powers of

√
1− 2x, in other words, powers

of (1 − 2x), yet in other words, polynomials of degree at most 2i−1. If
n > 2i−1, then the sum p1(x) of these polynomials will not contribute to
[xn]A(x).

Therefore, for large enough n, we can determine [xn]A(x) by determining
the coefficients of xn in the power series

(7)

2i∑
j=0

j even

(
2i

j

)
(
√

1− 2x)j
√

1− 2x
.

Note that by the binomial theorem, the last displayed sum is equal to

(8) Gi(x) =
gi(x)√
1− 2x

=
(1−

√
1− 2x)2i + (1 +

√
1− 2x)2i

2
√

1− 2x
.
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Now we claim that for all i ≥ 2, the polynomial

gi(x)− 22i−1
x2i−1

is divisible by (1 − 2x). In other words, if we remove the term of highest
degree from gi(x), the remaining polynomial is divisible by 1 − 2x. This is
somewhat surprising.

In order to see this, note that

gi(x)− 22i−1
x2i−1

= (gi(x)− 1) +
(

1− 22i−1
x2i−1

)
.

We show that both summands on the right-hand side are divisible by 1−2x.
Indeed, looking at (8), we see that 1 is the only expansion term in gi(x) that
is not divisible by 1 − 2x that does not cancel. So gi(x) − 1 is divisible by
1− 2x. On the other hand,

1− 22i−1
x2i−1

= (1− 22i−2
x2i−2

) · (1 + 22i−2
x2i−2

),

and our claim is proved by induction on i, the case of i = 2 being trivial.
To summarize, we have shown that

A(x) = p1(x) + p2(x)
√

1− 2x +
22i−1

x2i−1

√
1− 2x

,

where p1 and p2 are polynomial functions.
As p1(x) is a polynomial, it does not contribute to [xn]A(x) if n is

large enough. As
√

1− 2x = 1 −
∑

n≥1(2n − 3)!!xn/n!, the contribution

of p2(x)
√

1− 2x to [xn]A(x) is negligible compared to the contribution of
1/
√

1− 2x =
∑

n≥0(2n − 1)!!xn/n!. On the other hand, setting q = 2i−1

and applying Proposition 2.1, the contribution of 22
i−1

x2i−1

√
1−2x

to [xn]A(x) is

asymptotically equal to m0(n)/n! = (2n − 1)!!/n!. As Mi(x) = A(x)

22i−1
, our

claim is proved. �

That is, Lemma 2.6 proves that as n goes to infinity, about 1/8 of all the
vertices of all phylogenetic trees on label set [n] will be of rank at least two,
about 1/128 of the vertices will be of rank at least three, and so on, and

in general, about 21−2i of all vertices will be of rank at least i. (We have
already known that about half of the vertices will be of rank at least 1. )

Corollary 2.7. Let p2,i(n) be the probability that a randomly selected vertex
of a random phylogenetic tree on label set [n] is of rank exactly i. Then
P2,i = limn→∞ p2,i(n) exists, and

P2,i = lim
n→∞

mi(n)−mi+1(n)

m0(n)
=

1

22i−1
− 1

22i+1−1
.

So about half of the vertices are leaves, about 3/8 of the vertices are of
rank two, about 7/128 of the vertices are of rank three, and so on.
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3. The general case

3.1. Generalized phylogenetric trees and the Lagrange inversion
formula. In this section we consider generalized phylogenetic trees. The
only change in the definition is that now each non-leaf vertex must have
exactly k children, for some fixed integer k ≥ 2. Let tk,n be the number of
such trees on leaf set [n], and set tk,0 = 0. Let Tk(x) be the exponential
generating function of these numbers.

Removing the root of such a tree, we get either the empty set, or an
unordered set of k such trees, leading to the functional equation

(9) Tk(x) = x +
T k
k (x)

k!
.

This means that Tk(x) is the compositional inverse of the power series
Fk(x) = x − xk/k!, so the coefficients of Tk(x) can be computed by the
Lagrange inversion formula. However, that does not imply that the power
series Tk(x) has a simple closed form. In fact, it usually does not, since it
is a solution of a functional equation of degree k, where k can be arbitrarily
high.

We extend our notation from the previous section as follows. Let mi,k(n)
denote the number of all vertices that are of rank at least i in all k-phylogenetic
trees on leaf set [n]. Let Mi,k(x) be the exponential generating function of
the numbers mi,k(n). Similarly let ri,k(n) be the number of k-phylogenetic
trees on leaf set [n] in which the root is of rank at least i, and let Ri,k(x) be
the exponential generating function of the numbers ri,k(n).

While the Lagrange inversion formula cannot provide a closed form for
most of our generating functions, it is still useful for us in that it enables
us to prove the following useful proposition. We include the proof of the
proposition, but it can be skipped without causing difficulties in reading the
rest of the paper.

Proposition 3.1. Let p be a polynomial function. Then

lim
n→∞

[xn]p (Tk(x))

[xn]M0,k(x)
= 0.

Proof. Note that [xn]M0,k(x) as well as [xn]Tk(x), and hence, [xn]p (Tk(x))
are nonzero if and only if n − 1 is divisible by k − 1. Indeed, growing a
k-phylogenetic tree from a single root by turning leafs into parents of leaves,
each step will increase the number of leaves by k − 1.

Clearly, it suffices to prove the statement in the special case when p(x) =
x`, that is, when p(Tk(x)) = T `

k(x). Indeed, all polynomials are linear
combinations of such monomials with constant coefficients. We can also
assume that ` > 0, since the stament is obviously true for the polynomial
x0 = 1.

We use the following version of the Langrange inversion formula (see
Chapter 5 of [18] for a proof. Let n and ` be positive integers, and let
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F 〈−1〉(x) be the compositional inverse of the power series F (x). Then

(10) n[xn](F 〈−1〉(x))` = `[xn−`]

(
x

F (x)

)n

.

Setting F (x) = Fk(x) = x − xk

k! , and recalling that F 〈−1〉(x) = Tk(x),
formula (10) yields

n[xn]T `
k(x) = `[xn−`]

(
x

x− xk

k!

)n

.

From this, we compute

[xn]T `
k(x) =

`

n
[xn−`]

(
1− xk−1

k!

)−n
=

`

n
[xn−`]

∑
s≥0

(
−n
s

)(
−xk−1

k!

)s

=
`

n
[xn−`]

∑
s≥0

(
n + s− 1

s

)
xs(k−1)

k!s

So, setting n − ` = s(k − 1), we have n = s(k − 1) + `, and the last
displayed chain of equalities implies that

(11) [xn]T `
k(x) =

`

s(k − 1) + `

(
ks + `− 1

s

)
1

k!s
.

Note that in particular, for ` = 1, we get

(12) [xn]Tk(x) =
1

s(k − 1) + 1

(
ks

s

)
1

k!s
.

On the other hand, as M0,k(x) counts all vertices of all k-phylogenetic
trees on leaf set [n]. As we said at the begining of this proof, this implies
that n = (k − 1)s + 1, for some nonnegative integer s, and it is easy to
see that such trees have exactly s non-leaf vertices, and therefore, ks + 1
total vertices. So each coefficient of M0,k is ks + 1 times as large as the
corresponding coefficient of Tk(x).

Therefore, it follows from (12) that

[xn]M0,k(x) = (ks + 1)
1

s(k − 1) + 1

(
ks

s

)
1

k!s
.

Comparing this with (11), we get that

[xn]
(
Tk(x)`

)
[xn]M0,k(x)

=

`
s(k−1)+`

(
ks+`−1

s

)
1
k!s

(ks + 1) 1
s(k−1)+1

(
ks
s

)
1
k!s

=
1

ks + 1
· (s(k − 1) + 1)`

s(k − 1) + `
· (ks + `− 1)(ks + `− 2) · · · (ks + `− s)

(ks)(ks− 1) · · · (ks− s + 1)
.
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As n goes to infinity, so does n − 1 = (k − 1)s, and therefore, ks. So the
product in the last displayed line clearly converges to 0, since the first term
converges to 0, the second one converges to the fixed integer `, and the third
one converges to 1. �

3.2. Generalized versions of basic counting results. Now we announce
the generalized versions of some facts that we have proved in the special case
of k = 2.

Lemma 3.2. For i ≥ 0, the equality

Mi,k(x) = Mi,k(x) · Tk(x)k−1

(k − 1)!
+ Ri,k(x)

holds.

Proof. Removing the root of a k-phylogenetic tree in which one non-root
vertex of rank at least i is marked, we get one such tree with one marked
vertex of rank at least i, and an unordered set of k−1 trees with no marked
vertices. By the product formula of exponential generating functions, such

collections have generating function Mi,k(x) · Tk(x)k−1

(k−1)! . On the other hand,

trees in which the root is marked and is of rank at least i are simply counted
by Ri,k(x). �

Therefore,

(13) Mi,k(x) =
Ri,k(x)

1− Tk(x)k−1

(k−1)!

.

Proposition 3.3. For all i ≥ 1, the recurrence relation

(14) Ri,k(x) =
Rk

i−1,k(x)

k!

holds.

Proof. Removing the root of a k-phylogenetic tree in which the root has
rank at least i, we get an unordered set of k such trees in which the root has
rank at least i− 1. The claim now follows from the product formula. �

Let us introduce the notation

ci = ci,k =
ki − 1

k − 1

for shortness.

Corollary 3.4. For all i ≥ 0, the equality

(15) Ri,k(x) =
Tk(x)k

i

k!ci

holds.
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Proof. This is straightforward by induction. Indeed, for i = 0, the equality
Ri,k(x) = Tk(x) holds, since in each tree, the root is of rank at least 0. Let
us assume that the statement is true for i− 1, that is,

Ri−1,k(x) =
Tk(x)k

i−1

k!ci−1
.

Now take the kth power of both sides, then divide by k!. By Proposition
3.3, this turns the left-hand side into Ri,k(x), so we get the equality

Ri,k(x) =
Tk(x)k

i

k!kci−1+1
.

This proves our claim since kci−1 + 1 = ci. �

Corollary 3.5. For all i ≥ 0, the equality

(16) Mi,k(x) =
1

k!ci
· Tk(x)k

i

1− Tk(x)k−1

(k−1)!

holds.
In particular, the generating function for the total number of vertices is

(17) M0,k(x) =
Tk(x)

1− Tk(x)k−1

(k−1)!

.

3.3. Our main results. Now we are in a position to state and prove the
main result of this paper.

Theorem 3.6. For all integers k ≥ 2, and for all integers i ≥ 1, the equality

(18) lim
n→∞

mi,k(n)

m0,k(n)
=

1

kci
=

1

k
ki−1
k−1

holds.

That is, for large n, about 1
kci of all vertices are of rank at least i.

Proof. Just like in the special case of k = 2, we proceed by splitting a
constant multiple of Mi,k(x) into two parts, one of which will turn out to be
a constant multiple of M0,k(x), and the other one of which will turn out to
be negligible, again by a divisibility argument.
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To that end, we consider the rightmost factor in (16), and essentially
divide the numerator by the denominator, noting that

Tk(x)k
i

1− Tk(x)k−1

(k−1)!

=

(
Tk(x)(k−1)ci

(k−1)!ci − 1
)

(k − 1)!ciTk(x) + (k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

=

(
Tk(x)(k−1)ci

(k−1)!ci − 1
)

(k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

+
(k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

=

(
Tk(x)(k−1)ci

(k−1)!ci − 1
)

(k − 1)!ciTk(x)

1− Tk(x)k−1

(k−1)!

+ (k − 1)!ciM0,k(x).

We have used (17) in the last step.
Now note that f ci − 1 = (f − 1)(f ci−1 + f ci−2 + · · ·+ f + 1). Using this

formula for f = Tk(x)k−1/(k − 1)!, we see that the first summand of the
last line in the last displayed array of equations is a polynomial function of
Tk(x), that is, we have proved that

Tk(x)k
i

1− Tk(x)k−1

(k−1)!

= p (Tk(x)) + (k − 1)!ciM0,k(x).

By Proposition 3.1, the contribution of p (Tk(x)) to the coefficient of xn

on the right-hand side is negligible. Comparing this observation with (16)
completes the proof. �

Corollary 3.7. Then for each fixed i, as n goes to infinity, the probability
that a random vertex of a random k-phylogenetic tree on label set [n] is of
rank i converges to a limit Pk,i, and

Pk,i =
1

kci
− 1

kci+1
=

1

kci
− 1

kkci+1
.

4. Further directions

The formula P2,i = 21−2i−21−2i+1
makes it routine to verify the following

proposition.

Proposition 4.1. The sequence infinite sequence P2,i = 21−2i − 21−2i+1
is

log-concave as i = 0, 1, · · · . Similarly, the infinite sequence Pk,i = 1
kci−

1
kkci+1

is log-concave for any fixed k.

It is plausible to conjecture this log-concave property for the analogously
defined sequences for many tree varieties, but it is usually hopeless to prove
it. In this case, however, because of the extreme simplicity of the formula for
Pk,i, the log-concave property is routine to prove. Is there a combinatorial
proof?

In light of the simple formulas for P2,n, one might think that phylogenetic
trees are simply too easy, and will lead to simple enumeration formulas for
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other problems as well. This is not necessarily the case as we will demon-
strate. In a phylogenetic tree, let the height of a vertex be the length of the
longest path from a vertex to its closest descendent leaf. Let Li(x) be the
exponential generating function for the total number of vertices of height at
most i in all phylogenetic trees on leaf set [n]. Let Wi(x) be the exponential
generating function for the number of phylogenetic trees on leaf set [n] in
which the root has height at most i. Then it is straightforward to prove
with the methods of Section 2 that for i ≥ 0, we have

(19) Li(x) =
Wi(x)

1− T (x)
=

Wi(x)√
1− 2x

.

However, the recurrence relation for the power series Wi(x) is obtained by
W0(x) = x, and

(20) Wi(x) =
W 2

i−1(x)

2
+ x

for i ≥ 0. Indeed, the root of a tree is of height at most i if both of its
children are of height at most i − 1, or it does not have any children at
all. It is that extra term x on the right-hand side of (20) that makes (20)
different from (4), which is the analogous recurrence relation defined for the
rank of the root. However, this small difference is sufficient to make the
formulas for Wi(x) and Li(x) not as elegant as those for Mi(x).

Indeed, it follows from Proposition 2.1 and identity (19) that the prob-
ability that a random vertex of a random phylogenetic tree has height at
most i converges to wi = Wi(1/2). (Note that Wi(x) is a polynomial for all
i, so Wi(1/2) is defined.) By (20), the sequence of the numbers wi satisfies
w0 = 1/2 and

(21) wi =
w2
i−1 + 1

2
,

and this recurrence relation does not seem to have a closed, explicit solution.
So we have seen that the fact that the formula for Pi,2, and even for Pi,k

is so simple is rather exceptional. This raises the question of whether there
is a combinatorial proof for this fact that does not use generating functions.
Note that a complete proof would also have to show that Pi,k exists, not
simply compute its numeric value.
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