
Real Zeros and Normal Distribution for statistis onStirling permutations de�ned by Gessel and StanleyMikl�os B�onaDepartment of MathematisUniversity of FloridaGainesville FL 32611-8105bona�math.u.edu �AbstratWe study Stirling permutations de�ned by Gessel and Stanley in[8℄. We prove that their generating funtion aording to the numberof desents has real roots only. We use that fat to prove that thedistribution of these desents, and other, equidistributed statistis onthese objets onverge to a normal distribution.1 IntrodutionIn [8℄ Ira Gessel and Rihard Stanley de�ned an interesting lass of multisetpermutations alled Stirling Permutations. Let Qn denote the set of allpermutations of the multiset f1; 1; 2; 2; � � � ; n; ng in whih for all i, all entriesbetween the two ourrenes of i are larger than i. For instane, Q2 has threeelements, namely 1122, 1221, and 2211. It is not diÆult to see that Qn has1�3�� � � �(2n�1) = (2n�1)!! elements. Gessel and Stanley then proved manyenumerative results for these permutations and showed several onnetionsbetween these and other ombinatorial objets, suh as set partitions.Counting Stirling permutations by desents, the authors of [8℄ found areurrene relation similar to the reurrene relation known for lassi per-mutations. In this paper, we will ontinue in that diretion. First, we showthe simple but interesting fat that on Qn the desent and the plateau statis-tis, to be de�ned in the next setion, are equidistributed. Then we provethat for any �xed n, the generating polynomial of all Stirling permutations�Partially supported by an NSA Young Investigator Award.1



in Qn with respet to the desent statisti has real roots only. This is analo-gous to the well-known ase (see Theorem 1.33 of [1℄) of lassi permutations,namely the result that all the roots of Eulerian polynomials are real. Finally,we apply a lassi result of Bender to use this real roots property to provethat the desents of Stirling permutations in Qn are normally distributed.2 Stirling Permutations and Real ZerosLet q = a1a2 � � � a2n 2 Qn be a Stirling permutation. Let the index i bealled an asent of q if i = 0 or ai < ai+1, let i be alled a desent of qif i = 2n or ai > ai+1, and let i be alled a plateau of q if ai = ai+1. Itis obvious that the asent and desent statistis are equidistributed, sinereversing an element of Qn turns asents into desents and vie versa. It issomewhat less obvious that the plateau statisti is also equidistributed withthe previous two. This fat, and a reason for it, are the ontent of the nextproposition. Note that its �rst identity, (1), was proved in [8℄.Proposition 1 Let Cn;i be the number of elements of Qn with i desents.Then for all positive integers n; i � 2, we haveCn;i = iCn�1;i + (2n� i)Cn�1;i�1: (1)Similarly, let n;i be number of elements of Qn with i plateaux. Then for allpositive integers n; i � 2, we haven;i = in�1;i + (2n� i)n�1;i�1: (2)In partiular, sine C1;1 = 1;1 = 1 and C1;0 = 1;0 = 0, the identityCn;i = n;i (3)holds.Proof: There are two ways to obtain an element of Qn from an elementp 2 Qn�1 by inserting two opies of n into onseutive positions. Either pmust have i desents, and then we insert the two opies of n into a desent,or p has i � 1 desents, and then we insert the two onseutive opies of ninto one of the (2n� 1)� (i� 1) = 2n� i positions that are not desents.The argument proving (2) is analogous. 32



Corollary 1 On average, elements of Qn have (2n+1)=3 asents, (2n+1)=3desents, and (2n+ 1)=3 plateaux.Proposition 1 enables us to prove a strong result on the roots of thepolynomials Pni=1Cn;ixi. The method we use follows an idea of H. Wilf([9℄, [1℄ Theorem 1.33) who used it on lassi permutations.Theorem 1 Let Cn(x) =Pni=1 Cn;ixi. Then for all positive integers n, theroots of the polynomial Cn(x) are all real, distint, and non-positive.Proof: For n = 1, one sees that C1(x) = x, and the statement holds. Forn = 2, one sees that C2(x) = 2x2 + x = x(2x + 1), and so the statementagain holds.For n � 3, reurrene relation (1) impliesCn(x) = (x� x2)C 0n�1(x) + (2n� 1)xCn�1(x) (4)as an be seen by equating oeÆients of xi. The right-hand side is similarto the derivative of a produt, whih suggests the following rearrangementCn(x) = x(1� x)2n ddx �(1� x)1�2nCn�1(x)� : (5)Let us now assume indutively that the roots of Cn�1(x) are real, distintand non-positive. Clearly, Cn(x)) vanishes at x = 0. Furthermore, by Rolle'stheorem, (5) shows that Cn(x) has a root between any pair of onseutiveroots of Cn�1(x). This ounts for n � 1 roots of Cn(x). So the last rootmust also be real, sine omplex roots of polynomials with real oeÆientsmust ome in onjugate pairs.There remains to show that the last root of Cn(x) must be on the rightof the rightmost root of Cn�1. Consider (4) at the rightmost root x0 ofCn�1. As x0 is negative, we know that x0 � x20 < 0, and so Cn(x0) andC 0n�1(x0) have opposite signs. The laim now follows, sine in �1, thepolynomials Cn(x) and C 0n�1(x) must onverge to the same (in�nite) limitas their degrees are of the same parity. As C 0n�1(x) has no more roots onthe right of x0, the polynomial Cn(x) must have one. 3Note that we have in fat proved that the roots of Cn�1(x) and Cn(x)are interlaing, so the sequene C1; C2; � � � is a Sturm sequene.As an immediate appliation of the real zeros property, we an determinewhere peak (or peaks) of the sequene Cn;1; Cn;2; � � � ; Cn;n is. Our tool indoing so is the following theorem of Darroh.3



Theorem 2 [4℄ Let A(x) =Pnk=0 akxk be a polynomial that has real rootsonly that satis�es A(1) > 0. Let m be an index so that am = max0�i�n ai.Let � = A0(1)=A(1). Then we havej��mj < 1:In partiular, a sequene with the real zeros property an have at mosttwo peaks. Note that A0(1) = Pni=0 iai and A(1) = Pni=0 ai, thereforeA0(1)=A(1) is nothing else but the weighted average of the oeÆients ai,with i being the weight of ai. So in the partiular ase when A(x) = Cn(x),we have C 0n(1)Cn(1) = Pi iCn;iPiCn;i= Xi i � Cn;i(2n� 1)!!= 2n+ 13 ;where the last step follows from Corollary 1. Indeed, Cn;i(2n�1)!! is just theprobability that a randomly seleted Stirling permutation of length n hasexatly i desents, so sumii � Cn;i(2n�1)!! is just the expeted number of desentsin suh permutations.Therefore, by Theorem 2, we obtain the following result.Theorem 3 Let i be an index so that Cn;i = maxk Cn;k. Then1. i = (2n+ 1)=3 if (2n+ 1)=3 is an integer, and2. i = b(2n+ 1)=3 or i = d(2n+ 1)=3e if (2n+ 1)=3 is not an integer.3 Stirling Permutations and Normal DistributionIn this setion, we prove that the plateaux (equivalently asents, equiva-lently, desents) of Stirling permutations are normally distributed. Our maintool is the following result of Bender. Let Xn be a random variable, and letan(k) be a triangular array of non-negative real numbers, n = 1; 2; � � � , and1 � k � m(n) so thatP (Xn = k) = pn(k) = an(k)Pm(n)i=1 an(i) :4



Set gn(x) =Pm(n)k=1 pn(k)xk.We need to introdue some notation for transforms of the random vari-able Z. Let �Z = Z � E(Z), let ~Z = �Z=pVar(Z), and let Zn ! N(0; 1)mean that Zn onverges in distribution to the standard normal variable.Theorem 4 [2℄ Let Xn and gn(x) be as above. If gn(x) has real roots only,and �n =pVar(Xn) !1;then ~Xn ! N(0; 1).See [3℄ for related results.We want to use Theorem 4 to prove that the plateaux of permutations inQn are normally distributed. Beause of Theorem 1, all we need for that is toprove that the variane of the number of these plateaux onverges to in�nityas n goes to in�nity. We will aomplish more by proving an expliit formulafor this variane. In order to state that formula, let Yn;i be the indiatorrandom variable of the event that in a randomly seleted element of Qn,the two opies of i are onseutive, that is, they form a plateau. Note thatP (Yn;n = 1) = E(Yn;n) = 1. Set Yn =Pni=1 Yn;i.Theorem 5 For all positive integers n, the equalityVar(Yn) = 2n2 � 218n� 9 (6)holds.Proof: We are going to use the identity Var(Yn) = E(Y 2n ) � E(Yn)2. Wehave seen in Corollary 1 that E(Yn) = 2n+13 . Let sn = E(Y 2n ). The keyelement of our omputations is the following lemma.Lemma 1 For all positive integers n, the equalitysn+1 = 2n� 12n+ 1 � sn + 4n+ 43 : (7)holds.Proof: In order to prove (7), we need the following simple fats.
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Proposition 2 1. For all positive integers n, and all indies i 6= j thatsatisfy 1 � i; j � n, the equalityE(Yn+1;iYn+1;j) = 2n� 12n+ 1E(Yn;iYn;j)holds.2. For all positive integers n and all indies 1 � i � n, the equalityE(Yn+1;i) = 2n2n+ 1E(Yn;i)holds.3. For all indies i � n+ 1, the equalityE(Yn+1;iYn+1;n+1) = E(Yn+1;i)holds. In partiular, E(Yn+1;n+1) = 1.Proof:1. In order to get an element of Qn+1 in whih i and j are both plateaux,take an element of Qn in whih i and j are both plateaux, and inserttwo onseutive opies of n+1 into any of the 2n� 1 available plaes,that is, anywhere but between the two opies of i or the two opies ofj.2. In order to get an element of Qn+1 in whih i is a plateau, insert twoonseutive opies of n + 1 into any of the 2n available slots, that is,anywhere but between the two opies of i.3. Obvious sine n+ 1 is always a plateau in elements of Qn+1.3 We return to proving Lemma 1.Note that sn+1 = P1�i;j�n+1E(Yn+1;iYn+1;j). The latter an be splitinto partial sums based on whether i or j are equal to n+ 1 as follows.sn+1 = X1�j�n+1E(Yn+1;n+1Yn+1;j) + X1�i�nE(Yn+1;iYn+1;n+1)+ X1�i;j�nE(Yn+1;iYn+1;j):6



Based on part 3 of Proposition 2, this simpli�es tosn+1 = X1�j�n+1E(Yn+1;j) + X1�i�nE(Yn+1;i) + X1�i;j�ni6=j E(Yn+1;iYn+1;j)+ X1�i�nE(Yn+1;i):Now note that the �rst sum on the right-hand side is just E(Yn+1), theseond sum is E(Yn+1�Yn+1;n+1) = E(Yn+1)� 1, use part 1 of Proposition2 on the third sum, and part 2 of Proposition 2 on the fourth sum to getsn+1 = 2E(Yn)� 1 + 2n� 12n+ 1 (sn �E(Yn)) + 2n2n+ 1E(Yn):Realling from Corollary 1 that E(Yn) = 2n+13 , this redues to (7). 3Using the reursive formula proved in Lemma 1, it is routine to provethat sn = E(Y 2n ) = 8n3 + 6n2 � 2n� 318n� 9 : (8)Therefore, Var(Yn) = sn �E(Yn)2 = 2n2�218n�9 as laimed. 3Theorem 6 The distribution of the number of plateaux of elements of Qnonverges to a normal distribution as n goes to in�nity. That is, ~Yn !N(0; 1).Proof: Let Xn = Yn, and let gn(x) = 1(2n�1)!!Cn(x). Then Theorem 1 andTheorem 5 show that the onditions of Theorem 4 are satis�ed, and thelaim follows from Theorem 4. 34 RemarksCorollary 1 shows that E(Yn) = (2n+ 1)=3. It is not diÆult to prove thatE(Yn;n�i) = Qij=1 2n�2j2n�2j+1 By the linearity of expetation this proves theinteresting identity n�1Xi=0 iYj=1 2n� 2j2n� 2j + 1 = 2n+ 13 ;7



where the empty produt (indexed by i = 0) is onsidered to be 1.The proof of the equidistribution of the desent and plateau statistiswe gave is very simple, but it is of reursive nature. It an be used tode�ne an algorithm that reursively onstruts a bijetion f from the set ofpermutations in Qn that have k desents into the set of permutations in Qnthat have k plateaux. Let us assume that suh a bijetion has already beenonstruted for Qn�1, and any k � n� 1. If p 2 Qn, and p has k desents,then let p0 2 Qn�1 be the permutation obtained from p by removing the twoopies of n. Let q0 be the image of p0 under the bijetion already onstrutedfor Qn�1. If p is obtained from p0 by inserting two opies of n into the ithdesent of p0, then let f(p) = q be the permutation obtained from q0 byinserting the two opies of n into the ith plateau of q. If p is obtainedfrom p0 by inserting two opies of n into the jth non-desent of p0, then letf(p) = q be the permutation obtained from q0 by inserting the two opies ofn into the jth non-desent of q0.A diret bijetive proof has reently been given by Hyeong-Kwan Ju [7℄.We mention that the results of this work have reently been extendedby Janson [5℄, and Janson et al. [6℄.AknowledgmentI am indebted to Svante Janson, who pointed out an error in an earlierversion of this paper, whih led to an improvement of my results. I amgrateful to Ira Gessel for having taken the time to show me some earlierunpublished work on the subjet.Referenes[1℄ M. B�ona, Combinatoris of Permutations, CRC Press - ChapmanHall, 2004.[2℄ E. A. Bender, Central and Loal Limit Theorems Applied to Asymp-toti Enumeration, Journal of Combinatorial Theory, Ser. A, 15(1973), 91{111.[3℄ E. R. Can�eld, Central and loal limit theorems for oeÆients of poly-nomials of binomial type, Journal of Combinatorial Theory, Ser. A, 23(1977), 275{290.[4℄ J. N. Darroh, On the distribution number of suesses in independenttrials. Ann. Math. Stat., 35 (1964), 1317{1321.8
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