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tWe study Stirling permutations de�ned by Gessel and Stanley in[8℄. We prove that their generating fun
tion a

ording to the numberof des
ents has real roots only. We use that fa
t to prove that thedistribution of these des
ents, and other, equidistributed statisti
s onthese obje
ts 
onverge to a normal distribution.1 Introdu
tionIn [8℄ Ira Gessel and Ri
hard Stanley de�ned an interesting 
lass of multisetpermutations 
alled Stirling Permutations. Let Qn denote the set of allpermutations of the multiset f1; 1; 2; 2; � � � ; n; ng in whi
h for all i, all entriesbetween the two o

urren
es of i are larger than i. For instan
e, Q2 has threeelements, namely 1122, 1221, and 2211. It is not diÆ
ult to see that Qn has1�3�� � � �(2n�1) = (2n�1)!! elements. Gessel and Stanley then proved manyenumerative results for these permutations and showed several 
onne
tionsbetween these and other 
ombinatorial obje
ts, su
h as set partitions.Counting Stirling permutations by des
ents, the authors of [8℄ found are
urren
e relation similar to the re
urren
e relation known for 
lassi
 per-mutations. In this paper, we will 
ontinue in that dire
tion. First, we showthe simple but interesting fa
t that on Qn the des
ent and the plateau statis-ti
s, to be de�ned in the next se
tion, are equidistributed. Then we provethat for any �xed n, the generating polynomial of all Stirling permutations�Partially supported by an NSA Young Investigator Award.1



in Qn with respe
t to the des
ent statisti
 has real roots only. This is analo-gous to the well-known 
ase (see Theorem 1.33 of [1℄) of 
lassi
 permutations,namely the result that all the roots of Eulerian polynomials are real. Finally,we apply a 
lassi
 result of Bender to use this real roots property to provethat the des
ents of Stirling permutations in Qn are normally distributed.2 Stirling Permutations and Real ZerosLet q = a1a2 � � � a2n 2 Qn be a Stirling permutation. Let the index i be
alled an as
ent of q if i = 0 or ai < ai+1, let i be 
alled a des
ent of qif i = 2n or ai > ai+1, and let i be 
alled a plateau of q if ai = ai+1. Itis obvious that the as
ent and des
ent statisti
s are equidistributed, sin
ereversing an element of Qn turns as
ents into des
ents and vi
e versa. It issomewhat less obvious that the plateau statisti
 is also equidistributed withthe previous two. This fa
t, and a reason for it, are the 
ontent of the nextproposition. Note that its �rst identity, (1), was proved in [8℄.Proposition 1 Let Cn;i be the number of elements of Qn with i des
ents.Then for all positive integers n; i � 2, we haveCn;i = iCn�1;i + (2n� i)Cn�1;i�1: (1)Similarly, let 
n;i be number of elements of Qn with i plateaux. Then for allpositive integers n; i � 2, we have
n;i = i
n�1;i + (2n� i)
n�1;i�1: (2)In parti
ular, sin
e C1;1 = 
1;1 = 1 and C1;0 = 
1;0 = 0, the identityCn;i = 
n;i (3)holds.Proof: There are two ways to obtain an element of Qn from an elementp 2 Qn�1 by inserting two 
opies of n into 
onse
utive positions. Either pmust have i des
ents, and then we insert the two 
opies of n into a des
ent,or p has i � 1 des
ents, and then we insert the two 
onse
utive 
opies of ninto one of the (2n� 1)� (i� 1) = 2n� i positions that are not des
ents.The argument proving (2) is analogous. 32



Corollary 1 On average, elements of Qn have (2n+1)=3 as
ents, (2n+1)=3des
ents, and (2n+ 1)=3 plateaux.Proposition 1 enables us to prove a strong result on the roots of thepolynomials Pni=1Cn;ixi. The method we use follows an idea of H. Wilf([9℄, [1℄ Theorem 1.33) who used it on 
lassi
 permutations.Theorem 1 Let Cn(x) =Pni=1 Cn;ixi. Then for all positive integers n, theroots of the polynomial Cn(x) are all real, distin
t, and non-positive.Proof: For n = 1, one sees that C1(x) = x, and the statement holds. Forn = 2, one sees that C2(x) = 2x2 + x = x(2x + 1), and so the statementagain holds.For n � 3, re
urren
e relation (1) impliesCn(x) = (x� x2)C 0n�1(x) + (2n� 1)xCn�1(x) (4)as 
an be seen by equating 
oeÆ
ients of xi. The right-hand side is similarto the derivative of a produ
t, whi
h suggests the following rearrangementCn(x) = x(1� x)2n ddx �(1� x)1�2nCn�1(x)� : (5)Let us now assume indu
tively that the roots of Cn�1(x) are real, distin
tand non-positive. Clearly, Cn(x)) vanishes at x = 0. Furthermore, by Rolle'stheorem, (5) shows that Cn(x) has a root between any pair of 
onse
utiveroots of Cn�1(x). This 
ounts for n � 1 roots of Cn(x). So the last rootmust also be real, sin
e 
omplex roots of polynomials with real 
oeÆ
ientsmust 
ome in 
onjugate pairs.There remains to show that the last root of Cn(x) must be on the rightof the rightmost root of Cn�1. Consider (4) at the rightmost root x0 ofCn�1. As x0 is negative, we know that x0 � x20 < 0, and so Cn(x0) andC 0n�1(x0) have opposite signs. The 
laim now follows, sin
e in �1, thepolynomials Cn(x) and C 0n�1(x) must 
onverge to the same (in�nite) limitas their degrees are of the same parity. As C 0n�1(x) has no more roots onthe right of x0, the polynomial Cn(x) must have one. 3Note that we have in fa
t proved that the roots of Cn�1(x) and Cn(x)are interla
ing, so the sequen
e C1; C2; � � � is a Sturm sequen
e.As an immediate appli
ation of the real zeros property, we 
an determinewhere peak (or peaks) of the sequen
e Cn;1; Cn;2; � � � ; Cn;n is. Our tool indoing so is the following theorem of Darro
h.3



Theorem 2 [4℄ Let A(x) =Pnk=0 akxk be a polynomial that has real rootsonly that satis�es A(1) > 0. Let m be an index so that am = max0�i�n ai.Let � = A0(1)=A(1). Then we havej��mj < 1:In parti
ular, a sequen
e with the real zeros property 
an have at mosttwo peaks. Note that A0(1) = Pni=0 iai and A(1) = Pni=0 ai, thereforeA0(1)=A(1) is nothing else but the weighted average of the 
oeÆ
ients ai,with i being the weight of ai. So in the parti
ular 
ase when A(x) = Cn(x),we have C 0n(1)Cn(1) = Pi iCn;iPiCn;i= Xi i � Cn;i(2n� 1)!!= 2n+ 13 ;where the last step follows from Corollary 1. Indeed, Cn;i(2n�1)!! is just theprobability that a randomly sele
ted Stirling permutation of length n hasexa
tly i des
ents, so sumii � Cn;i(2n�1)!! is just the expe
ted number of des
entsin su
h permutations.Therefore, by Theorem 2, we obtain the following result.Theorem 3 Let i be an index so that Cn;i = maxk Cn;k. Then1. i = (2n+ 1)=3 if (2n+ 1)=3 is an integer, and2. i = b(2n+ 1)=3
 or i = d(2n+ 1)=3e if (2n+ 1)=3 is not an integer.3 Stirling Permutations and Normal DistributionIn this se
tion, we prove that the plateaux (equivalently as
ents, equiva-lently, des
ents) of Stirling permutations are normally distributed. Our maintool is the following result of Bender. Let Xn be a random variable, and letan(k) be a triangular array of non-negative real numbers, n = 1; 2; � � � , and1 � k � m(n) so thatP (Xn = k) = pn(k) = an(k)Pm(n)i=1 an(i) :4



Set gn(x) =Pm(n)k=1 pn(k)xk.We need to introdu
e some notation for transforms of the random vari-able Z. Let �Z = Z � E(Z), let ~Z = �Z=pVar(Z), and let Zn ! N(0; 1)mean that Zn 
onverges in distribution to the standard normal variable.Theorem 4 [2℄ Let Xn and gn(x) be as above. If gn(x) has real roots only,and �n =pVar(Xn) !1;then ~Xn ! N(0; 1).See [3℄ for related results.We want to use Theorem 4 to prove that the plateaux of permutations inQn are normally distributed. Be
ause of Theorem 1, all we need for that is toprove that the varian
e of the number of these plateaux 
onverges to in�nityas n goes to in�nity. We will a

omplish more by proving an expli
it formulafor this varian
e. In order to state that formula, let Yn;i be the indi
atorrandom variable of the event that in a randomly sele
ted element of Qn,the two 
opies of i are 
onse
utive, that is, they form a plateau. Note thatP (Yn;n = 1) = E(Yn;n) = 1. Set Yn =Pni=1 Yn;i.Theorem 5 For all positive integers n, the equalityVar(Yn) = 2n2 � 218n� 9 (6)holds.Proof: We are going to use the identity Var(Yn) = E(Y 2n ) � E(Yn)2. Wehave seen in Corollary 1 that E(Yn) = 2n+13 . Let sn = E(Y 2n ). The keyelement of our 
omputations is the following lemma.Lemma 1 For all positive integers n, the equalitysn+1 = 2n� 12n+ 1 � sn + 4n+ 43 : (7)holds.Proof: In order to prove (7), we need the following simple fa
ts.
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Proposition 2 1. For all positive integers n, and all indi
es i 6= j thatsatisfy 1 � i; j � n, the equalityE(Yn+1;iYn+1;j) = 2n� 12n+ 1E(Yn;iYn;j)holds.2. For all positive integers n and all indi
es 1 � i � n, the equalityE(Yn+1;i) = 2n2n+ 1E(Yn;i)holds.3. For all indi
es i � n+ 1, the equalityE(Yn+1;iYn+1;n+1) = E(Yn+1;i)holds. In parti
ular, E(Yn+1;n+1) = 1.Proof:1. In order to get an element of Qn+1 in whi
h i and j are both plateaux,take an element of Qn in whi
h i and j are both plateaux, and inserttwo 
onse
utive 
opies of n+1 into any of the 2n� 1 available pla
es,that is, anywhere but between the two 
opies of i or the two 
opies ofj.2. In order to get an element of Qn+1 in whi
h i is a plateau, insert two
onse
utive 
opies of n + 1 into any of the 2n available slots, that is,anywhere but between the two 
opies of i.3. Obvious sin
e n+ 1 is always a plateau in elements of Qn+1.3 We return to proving Lemma 1.Note that sn+1 = P1�i;j�n+1E(Yn+1;iYn+1;j). The latter 
an be splitinto partial sums based on whether i or j are equal to n+ 1 as follows.sn+1 = X1�j�n+1E(Yn+1;n+1Yn+1;j) + X1�i�nE(Yn+1;iYn+1;n+1)+ X1�i;j�nE(Yn+1;iYn+1;j):6



Based on part 3 of Proposition 2, this simpli�es tosn+1 = X1�j�n+1E(Yn+1;j) + X1�i�nE(Yn+1;i) + X1�i;j�ni6=j E(Yn+1;iYn+1;j)+ X1�i�nE(Yn+1;i):Now note that the �rst sum on the right-hand side is just E(Yn+1), these
ond sum is E(Yn+1�Yn+1;n+1) = E(Yn+1)� 1, use part 1 of Proposition2 on the third sum, and part 2 of Proposition 2 on the fourth sum to getsn+1 = 2E(Yn)� 1 + 2n� 12n+ 1 (sn �E(Yn)) + 2n2n+ 1E(Yn):Re
alling from Corollary 1 that E(Yn) = 2n+13 , this redu
es to (7). 3Using the re
ursive formula proved in Lemma 1, it is routine to provethat sn = E(Y 2n ) = 8n3 + 6n2 � 2n� 318n� 9 : (8)Therefore, Var(Yn) = sn �E(Yn)2 = 2n2�218n�9 as 
laimed. 3Theorem 6 The distribution of the number of plateaux of elements of Qn
onverges to a normal distribution as n goes to in�nity. That is, ~Yn !N(0; 1).Proof: Let Xn = Yn, and let gn(x) = 1(2n�1)!!Cn(x). Then Theorem 1 andTheorem 5 show that the 
onditions of Theorem 4 are satis�ed, and the
laim follows from Theorem 4. 34 RemarksCorollary 1 shows that E(Yn) = (2n+ 1)=3. It is not diÆ
ult to prove thatE(Yn;n�i) = Qij=1 2n�2j2n�2j+1 By the linearity of expe
tation this proves theinteresting identity n�1Xi=0 iYj=1 2n� 2j2n� 2j + 1 = 2n+ 13 ;7



where the empty produ
t (indexed by i = 0) is 
onsidered to be 1.The proof of the equidistribution of the des
ent and plateau statisti
swe gave is very simple, but it is of re
ursive nature. It 
an be used tode�ne an algorithm that re
ursively 
onstru
ts a bije
tion f from the set ofpermutations in Qn that have k des
ents into the set of permutations in Qnthat have k plateaux. Let us assume that su
h a bije
tion has already been
onstru
ted for Qn�1, and any k � n� 1. If p 2 Qn, and p has k des
ents,then let p0 2 Qn�1 be the permutation obtained from p by removing the two
opies of n. Let q0 be the image of p0 under the bije
tion already 
onstru
tedfor Qn�1. If p is obtained from p0 by inserting two 
opies of n into the ithdes
ent of p0, then let f(p) = q be the permutation obtained from q0 byinserting the two 
opies of n into the ith plateau of q. If p is obtainedfrom p0 by inserting two 
opies of n into the jth non-des
ent of p0, then letf(p) = q be the permutation obtained from q0 by inserting the two 
opies ofn into the jth non-des
ent of q0.A dire
t bije
tive proof has re
ently been given by Hyeong-Kwan Ju [7℄.We mention that the results of this work have re
ently been extendedby Janson [5℄, and Janson et al. [6℄.A
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